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Abstract
It is well-known that the deformation problem of a compact coisotropic submanifold
C in a symplectic manifold is obstructed in general. We show that it becomes unob-
structed if one only allows coisotropic deformations whose characteristic foliation is
diffeomorphic to that of C . This extends an unobstructedness result in the setting of
integral coisotropic submanifolds due to Ruan.
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Introduction

Lagrangian submanifolds are fundamental objects in symplectic geometry with a sim-
ple deformation theory. Given a Lagrangian submanifold L ⊂ (M, ω), Weinstein’s
Lagrangian neighborhood theorem [26] states that one can identify (M, ω) with the
cotangent bundle (T ∗L, ωcan) around L . This implies that deformations of L corre-
spond with small closed one-forms on L . Hence, the Lagrangian deformation problem
is linear and unobstructed.

Coisotropic submanifolds encompass the Lagrangian ones, and these submanifolds
show up naturally in various contexts (e.g., zero level sets of moment maps, first
class constraints in mechanics). A coisotropic submanifold C ⊂ (M, ω) carries a
characteristic foliation F , which plays a key role in the deformation problem of C .
Gotay’s theorem [13] provides an extension of Weinstein’s Lagrangian neighborhood
theorem, showing that one can identify (M, ω) with (U ,�G) around C . Here, U is a
neighborhood of the zero section of T ∗F , and �G is a symplectic form constructed
out of a complement G to TF . In contrast to the Lagrangian case, the coisotropic
sections of (U ,�G) are cut out by a highly nonlinear equation, which is actually the
Maurer–Cartan equation of a suitable L∞-algebra [18, 21]. Moreover, the coisotropic
deformation problem is obstructed in general, meaning that there may exist first-order
deformations which are not tangent to any path of deformations [27].

In this note, we revisit the obstructedness problem for compact coisotropic sub-
manifolds. It appears that obstructedness of the coisotropic deformation problem of
C is intimately related with instability of its characteristic foliation. This is suggested
by the following two results, going in opposite directions:

• Zambonconstructed anobstructed example in [27], featuring a compact coisotropic
submanifold C with arbitrarily C1-small deformations whose characteristic folia-
tion is not diffeomorphic to that of C .

• A compact coisotropic submanifold is called integral if its characteristic foliation
F is given by the fibers of a fiber bundle C → C/F . Ruan showed that the
deformation problem of an integral coisotropic submanifold—within the class of
such submanifolds—is unobstructed [20].

These results are our motivation to look at a restricted version of the coisotropic defor-
mation problem of C , which only allows deformations whose characteristic foliation
is diffeomorphic to that of C . In other words, we deform C within the class

DefF (C)

:= {
C ′ ⊂ (M, ω) coisotropic : ∃ foliated diffeomorphism (C,F)

∼→ (C ′,F ′)
}
.
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Ourmain result states that this deformation problem is unobstructed (seeTheorem3.5).
Main Theorem. Let C ⊂ (M, ω) be a compact coisotropic submanifold with char-

acteristic foliationF . The deformation problem of C withinDefF (C) is unobstructed.
Wewould like to interpret this unobstructedness result as follows. Zambon’s exam-

ple [27] shows that the space of compact coisotropic submanifolds of a symplectic
manifold (M, ω) is not smooth in general. More precisely, it may fail to be a Fréchet
submanifold of the Fréchet manifold consisting of all compact submanifolds of M .
However, if we define an equivalence relation on the space of compact coisotropic
submanifolds of (M, ω), declaring (C,F) and (C ′,F ′) to be equivalent if there exists
a foliated diffeomorphism between them, then ourMain Theorem states that the result-
ing equivalence classes are smooth, in a loose way. It would be interesting to know if
this can be made sense of in a more precise way.

Overview of the paper.
Section 1 collects some background information about coisotropic submanifolds

and the Gotay normal form. We recall that as a consequence of this normal form, first-
order deformations of a coisotropic submanifold C are leafwise closed one-forms on
its characteristic foliation F . With the aim of this note in mind, we also review the
well-known fact that first-order deformations of the foliationF , modulo those induced
by isotopies, are given by the first foliated cohomology groupwith values in the normal
bundle H1(F; NF).

In Sect. 2, we argue what are the appropriate first-order deformations when deform-
ing a coisotropic submanifold C inside DefF (C). By the above, these are closed
foliated one-forms which in a way should give rise to a trivial class in H1(F; NF).
This assignment is achieved by a tool which is central in this paper, namely a canonical
transverse differentiation map

dν : H1(F) → H1(F; N∗F).

We should note here that since F is transversely symplectic, there is a canonical
isomorphism H1(F; NF) ∼= H1(F; N∗F).Hence, themapdν does indeedgive away
to relate first-order deformations ofC—as a coisotropic submanifold—with first-order
deformations of its foliation F . We obtain the following description for the first-order
deformations of C within the class DefF (C) (see Lemma 2.6 and Proposition 2.10).

Proposition Let C ⊂ (M, ω) be a compact coisotropic submanifold. When deforming
C inside DefF (C), a first-order deformation is a closed foliated one-form β ∈ �1(F)

whose cohomology class lies in the kernel of dν : H1(F) → H1(F; N∗F).

First-order deformations have the following geometric interpretation (see
Lemma 2.12): they are exactly the foliated one-forms β ∈ �1(F) admitting an exten-
sion β̃ ∈ �1(C) that satisfies dβ̃ ∈ �2

bas(C). Here �bas(C) are the differential forms
on C that are basic with respect to F ; morally, they are the differential forms on the
leaf space C/F .

In case the coisotropic submanifold C is integral, then our notion of first-order
deformation reduces to closed foliated one-forms β ∈ �1(F) defining flat sections
of the vector bundle (H1,∇) made up by the first cohomology groups of the fibers
of C → C/F (see Example 2.13). These are exactly the first-order deformations
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considered by Ruan in the deformation problem of integral coisotropic submanifolds
[20].

Section 3 is the core of this note, as it contains the proof of the Main Theorem. We
show that every first-order deformation β ∈ �1(F) of C—as defined in the above
Proposition—is tangent to a path of coisotropic sections αt of the Gotay local model
(U ,�G), whose characteristic foliation is diffeomorphic to F . The proof is purely
geometric, its main ingredient being a Moser argument (see Lemma 3.4). In case
the coisotropic submanifold (C,F) is integral, our notion of first-order deformation
recovers that of Ruan (see above), and the path αt obtained via the Main Theorem
again consists of integral coisotropic submanifolds. So our Main Theorem extends
Ruan’s result [20] stating that the deformation problem of an integral coisotropic
submanifold—within the class of such submanifolds—is unobstructed.

At last, Sect. 4 discusses two implications that ourMain Theorem has for the classi-
cal coisotropic deformation problem, which allows all coisotropic deformations of C .

First, the Main Theorem yields a partial unobstructedness result in this context. It
shows that first-order deformations of C—i.e., closed foliated one-forms on F—are
unobstructed, if their cohomology class lies in ker(dν). We like to interpret this result
in the following way.

It is clear geometrically that first-order deformations β ∈ �1(F) admitting a closed
extension are unobstructed, since the latter yields a symplectic vector field on (U ,�G)

whose flow generates a path of coisotropic sections prolonging β. In practice, however,
this procedure does not yield many unobstructed first-order deformations: it only
concerns those closed β ∈ �1(F) whose cohomology class lies in the image of the
restriction map H1(C) → H1(F), which is a finite dimensional subspace. Since the
existence of a closed extension implies that [β] lies in the kernel of dν , the partial
unobstructedness statement resulting from our Main Theorem extends the geometric
fact just mentioned. By contrast, the kernel of dν is infinite dimensional in general (see
Example 4.4), hence our partial unobstructedness result has the potential to generate
much more unobstructed first-order deformations.

Second, we already remarked that there is an L∞-algebra [16] governing the
coisotropic deformation problem ofC [18, 21]. It is given by

(
�(∧T ∗F), {λk}

)
, and it

has the property that its Maurer–Cartan elements correspond with coisotropic sections
of the Gotay local model (U ,�G). The multibrackets λk are constructed out of �G ,
in particular they depend on the choice of complement G to TF . The L∞-algebra
gives a way to detect obstructed first-order deformations of C . Namely, for a first-
order deformation to be unobstructed, it needs to define a class in the kernel of the
Kuranishi map

Kr : H1(F) → H2(F) : [β] �→ [λ2(β, β)].

The partial unobstructedness result following from the Main Theorem implies that
ker(dν) is contained in ker(Kr). We double-check that this is indeed the case (see
Corollary 4.15). Actually, we prove a more interesting result. We show that although
the multibrackets λk depend on the choice of complement G, the Kuranishi map has
a canonical description in terms of the map dν and the induced presymplectic form
on C . This highlights once more the role played by the transverse differentiation map
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dν in the coisotropic deformation problem, and it implies in particular that ker(dν) is
contained in ker(Kr).

1 Background and setup

In this section, we first collect some background material about coisotropic submani-
folds in symplectic geometry.We then introduce in detail the deformation problem that
we will consider in this note. Namely, we want to study small deformations of a given
coisotropic submanifold C ⊂ (M, ω), whose characteristic foliation is diffeomor-
phic with that of C . At last, we recall the necessary preliminaries about infinitesimal
deformations of coisotropic submanifolds and foliations.

1.1 Coisotropic submanifolds and the Gotay normal form

We recall what it means for a submanifold C of a symplectic manifold (M, ω) to be
coisotropic. The definition involves the symplectic orthogonal TCω, which is defined
by

TCω := {v ∈ T M |C : ω(v,w) = 0 ∀w ∈ TC}.

We also recall Gotay’s theorem [13], which provides a normal form for (M, ω) around
a coisotropic submanifoldC . Such a normal form is useful to study small deformations
of C .

Definition 1.1 A submanifold C of (M, ω) is called coisotropic if TCω ⊂ TC .

We list some alternative characterisations of coisotropic submanifoldsC ⊂ (M, ω).
They involve the pullback ωC ∈ �2(C) of ω to C and are proved by straightforward
linear algebra.

Lemma 1.2 For any submanifold Ck ⊂ (M2n, ω), the following are equivalent:

(i) Ck ⊂ (M2n, ω) is coisotropic.
(ii) ωC has constant rank equal to 2(k − n).
(iii) ωk−n+1

C = 0.

The pullbackωC is a closed two-formof constant rank, so it defines a presymplectic
structure on C . Consequently, a coisotropic submanifold C has an induced foliation
F , defined by TF = ker(ωC ). We refer to F as the characteristic foliation of
C ⊂ (M, ω).

Gotay’s theorem [13] provides a normal form for a symplectic manifold (M, ω)

around a coisotropic submanifold C . The local model lives on a neighborhood of the
zero section of the vector bundle p : T ∗F → C , and it is defined as follows. Choose a
complement G to TF inside TC , and let j : T ∗F ↪→ T ∗C be the induced inclusion.
Denoting by ωcan the canonical symplectic form on T ∗C , the closed two-form

�G := p∗ωC + j∗ωcan
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is non-degenerate along C , hence it is a symplectic form on a neighborhood U of
C ⊂ T ∗F .

Theorem 1.3 (Gotay [13]) If C ⊂ (M, ω) is a coisotropic submanifold, then a
neighborhood of C in M is symplectomorphic with the local model (U ,�G). This
symplectomorphism can be chosen such that it restricts to the identity map on C.

The notation just introduced will be used throughout the paper:

• G is a complement to the characteristic distribution TF of C ⊂ (M, ω).
• j : T ∗F ↪→ T ∗C extends an element of T ∗F by zero on G. We also
denote the induced map on differential forms by j : �•(F) ↪→ �•(C).

• (U ,�G) is the Gotay local model for the choice of complement G.

By Gotay’s theorem, studying C1-small deformations of C ⊂ (M, ω) amounts to
studying small sections of the local model (U ,�G) whose graph is coisotropic. The
following result gives a convenient description for the coisotropic sections of (U ,�G).
The statement and its proof use the following pieces of notation. A section α ∈ �(U )

defines a diffeomorphism onto its image, which we denote by τα : C → Graph(α).
We set iα : Graph(α) ↪→ U to be the inclusion map, so we have α = iα ◦ τα as maps
C → U .

Proposition 1.4 Let Ck ⊂ (M2n, ω) be coisotropic with Gotay local model (U ,�G).
For any section α ∈ �(U ), we have

α∗�G = ωC − d( j(α)). (1)

Consequently, the following are equivalent:

(i) Graph(α) ⊂ (U ,�G) is coisotropic.
(ii)

(
α∗�G

)k−n+1 = 0.
(iii) ωC − d( j(α)) ∈ �2(C) has constant rank, equal to the rank of ωC .

Proof We first check that the equality (1) holds. Denoting by θcan the tautological
one-form on T ∗C , we have

α∗�G = α∗(p∗ωC − j∗dθcan) = ωC − d( j ◦ α)∗θcan = ωC − d( j(α)).

Here, the second equality uses that p ◦ α = IdC , and the third equality holds by the
defining property of the tautological one-form (see [5, Prop. 3.4]), which states that
the section j ◦ α ∈ �(T ∗C) pulls back the tautological one-form θcan ∈ �1(T ∗C) to
j(α) ∈ �1(C).
We now show that (i), (i i) and (i i i) are equivalent. By Lemma 1.2, Graph(α) ⊂

(U ,�G) is coisotropic exactly when the pullback i∗α�G ∈ �2(Graph(α)) has constant
rank equal to 2(k − n), or equivalently, when (i∗α�G)k−n+1 = 0. Since the map
τα : C → Graph(α) is a diffeomorphism, the former statement is equivalent with
τ ∗
α (i∗α�G) = α∗�G having constant rank 2(k−n), and the latter with (α∗�G)k−n+1 =

τ ∗
α ((i∗α�G)k−n+1) = 0. Along with the equality (1), this proves that (i), (i i) and (i i i)
are indeed equivalent. ��
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Proposition 1.4 shows that a coisotropic deformation of C defines an exact defor-
mation of the presymplectic structure ωC , i.e., we have an assignment

DefU (C) → Def(ωC ) : α �→ ωC − d( j(α)). (2)

Instead of working with coisotropic sections of (U ,�G), it is more convenient to work
with the associated presymplectic forms, because these are all defined on the same
manifold C .

1.2 Deformations with fixed characteristic foliation

Given a coisotropic submanifold C ⊂ (M, ω) with characteristic foliation F , our aim
is to study deformations ofC whose characteristic foliation is diffeomorphic toF . We
will now introduce this deformation space, and a local model for it which conveniently
describes small deformations.

Definition 1.5 We define DefF (C) to be the space of coisotropic submanifolds C ′ of
(M, ω) for which there exists a foliated diffeomorphism (C ′,F ′) ∼→ (C,F).

We are interested in elements of DefF (C) C1-close to C . That is, passing to the
Gotay local model (U ,�G) of C , we look at coisotropic sections α ∈ �(U ) for which
(Graph(α), ker(i∗α�G)) and (C, ker ωC ) are diffeomorphic as foliated manifolds. In
this respect, note the following.

Lemma 1.6 For any coisotropic section α of (U ,�G), the following are equivalent:

(i) There exists a foliateddiffeomorphismψ : (C, ker ωC ) → (Graph(α), ker(i∗α�G)).
(ii) There exists a foliated diffeomorphism φ : (C, ker ωC ) → (

C, ker(ωC −
d( j(α)))

)
.

Proof Recall from Proposition 1.4 that the section α defines a diffeomorphism τα :
C → Graph(α) with inverse p|Graph(α) : Graph(α) → C , satisfying τ ∗

α (i∗α�G) =
ωC − d( j(α)). Consequently, given ψ , we define φ := p|Graph(α) ◦ ψ . Conversely,
given φ, we set ψ := τα ◦ φ. ��

The lemma above motivates the following definition, which introduces the local
model DefUF (C) for the space DefF (C). This is the key object of study in this note.

Definition 1.7 LetC ⊂ (M, ω) be a coisotropic submanifold with characteristic folia-
tionF and Gotay local model (U ,�G). We set DefUF (C) to be the space of α ∈ �(U )

such that
{
Graph(α) is coisotropic in (U ,�G)

There is a foliated diffeomorphism (C, ker ωC )
∼→ (

C, ker(ωC − d( j(α)))
) .

Remark 1.8 The existence of a foliated diffeomorphism (C, ker ωC )
∼→ (

C, ker(ωC −
d( j(α)))

)
actually implies that Graph(α) is coisotropic in (U ,�G), because of Propo-

sition 1.4. Nevertheless, we prefer to include the first requirement in Definition 1.7
for the sake of clarity.
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In conclusion, the map (2), combined with the map which takes a constant rank
two-form to its kernel, yields a two-step process

DefU (C) → Def(ωC )
ker→ Def(F) : α �→ ker(ωC − d( j(α))),

which assigns to a coisotropic deformation α ∈ �(U ) of C a deformation of its
characteristic foliation F . We restrict attention to those elements α ∈ DefU (C) for
which the image under this map is equivalent with F by means of a diffeomorphism.

Example 1.9 We present a class of coisotropic submanifolds that have an abundance
of deformations with diffeomorphic characteristic foliation. If C ⊂ (M2n, ω) is
coisotropic of codimension q, then C is called of q-contact type [3] if there exist
α1, . . . , αq ∈ �1(C) such that:

(1) dαi = ωC for i = 1, . . . , q.
(2) α1 ∧ . . . ∧ αq ∧ ω

n−q
C is nowhere zero on C .

We give some concrete examples. First, a Lagrangian torus C ⊂ (M2n, ω) is of n-
contact type with αi = dθi , where (θ1, . . . , θn) are the angular coordinates on the
torus C . Second, the unit sphere S3 ⊂ (R4, ωcan) is of 1-contact type with α equal to
the usual connection one-form on S3 for the Hopf fibration, i.e.,

α = i∗
⎛

⎝
2∑

j=1

x j dy j − y j dx j

⎞

⎠ .

There is a normal form around coisotropic submanifolds of q-contact type [3, Lemma
1] which refines Gotay’s theorem, stating that a neighborhood of C in (M, ω) is
symplectomorphic with the model

(

C × Bq
ε , p∗ωC +

q∑

i=1

dle f t(yi p
∗αi r ight)

)

. (3)

Here, Bq
ε is the ε-ball in R

q centered at the origin, (y1, . . . , yq) are the coordinates
on Bq

ε and p : C × Bq
ε → C is the projection. As a consequence of this normal

form, all slices C × {h} for small enough h ∈ Bq
ε are coisotropic deformations of C

whose characteristic foliation is diffeomorphic with that of C . Indeed, pulling back
the symplectic form (3) to C × {h}, we obtain

i∗h

(

p∗ωC +
q∑

i=1

d
(
yi p

∗αi
)
)

=
(

1 +
q∑

i=1

hi

)

p|∗C×{h}ωC .

This shows that as long as ‖h‖ is small enough so that 1 + ∑q
i=1 hi is nonzero, then

C×{h} is coisotropic, and the projection p|C×{h} : C×{h} → C is a diffeomorphism
which matches the characteristic foliations of C × {h} and C .
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1.3 First-order deformations of coisotropic submanifolds and foliations

There are two classes of geometric objects whose deformation theory is important in
this note, namely coisotropic submanifolds and foliations. At the infinitesimal level,
the deformations of these objects are governed by certain cochain complexes and their
associated cohomology groups, which we now recall.

1.3.1 Coisotropic submanifolds

Let C ⊂ (M, ω) be a coisotropic submanifold with characteristic foliation F . It is
well-known that the complex governing infinitesimal deformations ofC is the leafwise
de Rham complex

(
�•(F), dF

)
, see [18, 22]. Here �k(F) := �(∧kT ∗F), and the

differential dF is defined by the usual Koszul formula

dFα(V0, . . . , Vk) =
k∑

i=0

(−1)i Vi
(
α(V0, . . . , Vi−1, V̂i , Vi+1, . . . , Vk)

)

+
∑

i< j

(−1)i+ jα
([Vi , Vj ], V0, . . . , V̂i , . . . , V̂ j , . . . , Vk

)
.

We spell this out in the following lemma, which was already obtained in [22, Cor. 2.5]
using Poisson geometry. We give a simple alternative argument, which only relies on
Proposition 1.4.

Lemma 1.10 Let Ck ⊂ (M2n, ω) be coisotropic with Gotay local model (U ,�G). If
αt is a smooth one-parameter family of coisotropic sections of U starting at the zero
section α0 = 0, then .

α0 is closed with respect to dF .

Proof By Proposition 1.4, we have

0 = d

dt

∣∣∣∣
t=0

(α∗
t �G)k−n+1

= (k − n + 1)

(
d

dt

∣∣∣∣
t=0

α∗
t �G

)
∧ (α∗

0�G)k−n

= (k − n + 1)

(
d

dt

∣∣∣∣
t=0

(
ωC − d( j(αt ))

)) ∧ ωk−n
C

= −(k − n + 1)d( j(
.
α0)) ∧ ωk−n

C , (4)

also using that the pullback of �G to the zero section is ωC . Since C is coisotropic,
we know that k ≥ n, hence (4) implies that d( j(

.
α0)) ∧ ωk−n

C = 0. So for all V ,W ∈
�(TF), we have

0 = ιW ιV
(
d( j(

.
α0)) ∧ ωk−n

C

) = (dF
.
α0)(V ,W )ωk−n

C .

By Lemma 1.2 (i i), the rank of ωC is 2(k − n), so that ωk−n
C is nowhere zero. So we

necessarily have that (dF
.
α0)(V ,W ) vanishes, which shows that dF

.
α0 = 0. ��
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This result motivates the following definition.

Definition 1.11 Assume that C ⊂ (M, ω) is a coisotropic submanifold with charac-
teristic foliation F and Gotay local model (U ,�G).

(i) A first-order deformation of C is a foliated one-form β ∈ �1(F) which is
dF -closed.

(ii) A first-order deformation β is said to be unobstructed if there exists a smooth
path αt of coisotropic sections ofU starting at the zero section α0 = 0, satisfying
.
α0 = β. Otherwise, we say that β is obstructed.

It is well-known that a coisotropic submanifold C has obstructed first-order defor-
mations in general, reflecting the fact that the space of coisotropic submanifolds may
fail to be smooth around C . See [27] for an example where this occurs.

1.3.2 Foliations

Let F be a foliation on a manifold C . The normal bundle NF := TC/TF carries a
flat TF-connection, called the Bott connection, which is defined by

∇XY = [X ,Y ], X ∈ �(TF),Y ∈ �(NF).

We obtain a complex
(
�•(F; NF), d∇

)
, where �k(F; NF) := �(∧kT ∗F ⊗ NF)

are foliated forms with values in NF , and the differential d∇ is defined by

d∇η(V0, . . . , Vk) =
k∑

i=0

(−1)i∇Vi

(
η(V0, . . . , Vi−1, V̂i , Vi+1, . . . , Vk)

)

+
∑

i< j

(−1)i+ jη
([Vi , Vj ], V0, . . . , V̂i , . . . , V̂ j , . . . , Vk

)
.

The work [14] of Heitsch shows that infinitesimal deformations of the foliation F
are one-cocycles in

(
�•(F; NF), d∇

)
. Moreover, if a smooth deformation of F is

obtained applying an isotopy to F , then the corresponding infinitesimal deformation
is a one-coboundary in

(
�•(F; NF), d∇

)
. We now spell this out in a bit more detail.

Assume we are given a smooth path of foliations Ft with F0 = F . We fix a
complement G to TF and identify G ∼= NF . The induced Bott connection on G is
given by

∇XY = prG [X ,Y ], X ∈ �(TF),Y ∈ �(G),

where prG : TC → G is the projection. Say thatC is compact, then there exists ε > 0
such that TFt is still transverse to G for 0 ≤ t ≤ ε. We can therefore assume that

TFt = Graph(ηt ) = {X + ηt (X) : X ∈ �(TF)}

for some ηt ∈ �(T ∗F ⊗ G). The next result is essentially [14, Cor. 2.11] and [14,
Prop. 2.12].
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Lemma 1.12 In the setup described above, we have:

(1) The infinitesimal deformation
.

η0 is closed with respect to d∇ .
(2) If the path Ft is generated by an isotopy (φt ), i.e., TFt = (φt )∗TF , then the

corresponding infinitesimal deformation is exact. Indeed,

.
η0 = d∇(prGV0),

where (Vt ) is the time-dependent vector field corresponding with the isotopy (φt ).

Remark 1.13 Actually, [14, Prop. 2.12] only concerns infinitesimal deformations aris-
ing from a path of foliations generated by the flow of a (time-independent) vector field.
However, it is clear that the proof still works when the vector field is time-dependent,
and the resulting statement is part (2) of Lemma 1.12.

Lemma 1.12 justifies the following definition.

Definition 1.14 Let F be a foliation on a manifold C .

(i) A first-order deformation of F is an element η ∈ �1(F; NF) which is d∇ -
closed.

(ii) We callF infinitesimally rigid if the cohomology group H1(F; NF) vanishes.

Let us also mention here that the Bott connection ∇ on NF induces a flat TF-
connection ∇∗ on N∗F ∼= TF0. The two are related by the Leibniz rule

X〈Y , β〉 = 〈∇XY , β〉 + 〈Y ,∇∗
Xβ〉, X ∈ �(TF),Y ∈ �(NF), β ∈ �(N∗F).

(5)

Of particular interest to us is the case in which the foliationF is transversely symplec-
tic, i.e., TF = ker ωC for a closed two-form ωC ∈ �2(C). Then, we have a vector
bundle isomorphism ω

�
C : NF → N∗F , and it was noticed in [23, Lemma 5.2] that

this isomorphism is compatible with the flat connections ∇ and ∇∗, i.e.,

∇∗
X

(
ω

�
C (Y )

) = ω
�
C

(∇XY
)
, X ∈ �(TF), Y ∈ �(NF).

It follows that ω�
C induces an isomorphism of complexes

Id ⊗ ω
�
C : (�(∧•T ∗F ⊗ NF), d∇

) ∼−→ (
�(∧•T ∗F ⊗ N∗F), d∇∗

)
,

hence also an isomorphism in cohomology H•(F; NF)
∼→ H•(F; N∗F).

2 First-order deformations and the transverse differentiationmap

In this section, we investigate what happens at the infinitesimal level when deform-
ing a coisotropic submanifold C inside the class DefF (C). We argue that first-order
deformations of C are leafwise closed one-forms α ∈ �1(F) whose cohomology
class [α] lies in the kernel of a certain transverse differentiation map dν : H1(F) →
H1(F; N∗F).
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2.1 Smooth paths in DefUF (C)

In order to linearize the conditions in Definition 1.7, we first need to specify what
are smooth paths in the local deformation space DefUF (C). We will start by defining a
notion of smooth path in DefF (C), which we use to induce a notion of smooth path
in DefUF (C).

Definition 2.1 ApathCt inDefF (C) is smooth if there is a smooth path of embeddings
�t : C ↪→ M such that Ct = �t (C) and �t : (C,F) → (Ct ,Ft ) is a foliated
diffeomorphism.

In what follows, it is crucial that a smooth path in DefF (C) comes with a smooth
family of foliated diffeomorphisms. We comment some more on Definition 2.1 in the
following remark.

Remark 2.2 Note that there is a 1 : 1 correspondence between the spaces

EmbF (C) :=
{

Embeddings � : C ↪→ M :
{

�(C) is coisotropic

ιv�
∗ω = 0 ∀v ∈ TF

}

and

PairsF (C) :=
{
(C ′, φ) ∈ DefF (C) × Diff(C,C ′)| φ : (C,F)

∼→ (C ′,F ′)
}

.

There is an obvious notion of smooth path in EmbF (C), while PairsF (C) clearly
surjects onto DefF (C). We obtain our notion of smooth path in DefF (C), by declaring
a path (Ct ) in DefF (C) to be smooth if it lifts to a smooth path in PairsF (C) ∼=
EmbF (C).

We now make a choice of tubular neighborhood of C via Gotay’s theorem, and we
restrict to C1-small deformations of C that stay inside this neighborhood (U ,�G).

Definition 2.3 Apath αt in DefUF (C) is smooth if there is a smooth path of embeddings
�t : C ↪→ U such thatGraph(αt ) = �t (C) and p◦�t : (C, ker ωC ) → (

C, ker(ωC−
d( j(αt )))

)
is a foliated diffeomorphism.

Remark 2.4 As in Rem. 2.2, there is a 1 : 1 correspondence between the spaces

EmbUF :=

⎧
⎪⎨

⎪⎩
Embeddings � : C ↪→ U :

⎧
⎪⎨

⎪⎩

�(C) = Graph(α) for some α ∈ �(U )

Graph(α) is coisotropic

ιv�
∗�G = 0 ∀v ∈ TF

⎫
⎪⎬

⎪⎭

and

PairsUF (C)

:=
{
(α, φ) ∈ DefUF (C) × Diff(C)| φ : (C, ker ωC )

∼→ (
C, ker(ωC − d( j(α)))

)}
.
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Explicitly, the correspondence is given by

EmbUF → PairsUF (C) : � → (
� ◦ (p ◦ �)−1, p ◦ �

)
,

with inverse

PairsUF (C) → EmbUF : (α, φ) → α ◦ φ.

Again, there is an obvious notion of smooth path in EmbUF , while PairsUF (C) clearly
surjects onto DefUF (C). We then obtain our notion of smooth path in DefUF (C), by
declaring a path (αt ) inDefUF (C) to be smooth if it lifts to a smooth path inPairsUF (C) ∼=
EmbUF (C).

2.2 First-order deformations

Given a smooth path αt in DefUF (C) deforming C , we will now figure out what prop-
erties are satisfied by the corresponding infinitesimal deformation .

α0. We first give
a non-canonical description of infinitesimal deformations in terms of a certain chain
map. We then rephrase this description in a canonical way by passing to cohomology.

2.2.1 A provisional definition

One would expect that in some way, the infinitesimal deformation .
α0 gives rise to a

trivial infinitesimal deformation of the foliationF , namely a 1-coboundary in the Bott
complex

(
�•(F;G), d∇

)
. We claim that this happens by means of the following map,

which we denote provisionally by �.

Definition 2.5 Let � : �(∧kT ∗F) → �(∧kT ∗F ⊗ G) denote the map defined by

〈�(α)(V1, . . . , Vk), β〉 = d( j(α))
(
V1, . . . , Vk, (ω

�
C )−1(β)

)

for α ∈ �(∧kT ∗F), β ∈ �(G∗) and V1, . . . , Vk ∈ �(TF).

In other words, the map � is defined as follows. For α ∈ �(∧kT ∗F), we have that

d( j(α)) ∈ �(∧k+1T ∗F) ⊕ �(∧kT ∗F ⊗ G∗) ⊕ �(∧k−1T ∗F ⊗ ∧2G∗).

Themap�picks the component in�(∧kT ∗F⊗G∗), and then applies the isomorphism

−Id ⊗ (ω
�
C )−1 : ∧kT ∗F ⊗ G∗ → ∧kT ∗F ⊗ G.

Lemma 2.6 Let C ⊂ (M, ω) be a compact coisotropic submanifold with local model
(U ,�G). Assume that αt is a smooth curve in DefUF (C) passing through C at time
t = 0. Then, the infinitesimal deformation .

α0 satisfies the following:

(1) dF
.
α0 = 0,
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(2) �(
.
α0) is exact in

(
�•(F;G), d∇

)
.

Proof We already know that item (i) holds by Lemma 1.10, so we only have to prove
(i i). Compactness ofC implies that there exists ε > 0 such that ker

(
ωC−d( j(αt ))

) ⊂
TF ⊕ G is still transverse to G for all 0 ≤ t ≤ ε. This means that there exist
ηt ∈ �(T ∗F ⊗ G) such that ker

(
ωC − d( j(αt ))

) = Graph(ηt ) for all t ∈ [0, ε]. So
for all v ∈ TF , we have that v + ηt (v) ∈ ker

(
ωC − d( j(αt ))

)
, it follows that

(
ωC − d( j(αt ))

)�
(ηt (v)) = d( j(αt ))

�(v).

Differentiating at t = 0, we get

ω
�
C

( .
η0(v)

) = d( j(
.
α0))

�(v).

Consequently, for any β ∈ G∗, we have

〈
�(

.
α0)(v), β

〉 = d( j(
.
α0))

(
v, (ω

�
C )−1(β)

)

= 〈
ω

�
C

( .
η0(v)

)
, (ω

�
C )−1(β)

〉

= 〈 − .
η0(v), β

〉
,

showing that �(
.
α0) = − .

η0. It remains to argue that .
η0 is a coboundary in(

�•(F;G), d∇
)
. Since αt is a smooth path in DefUF (C), Definition 2.3 guarantees

that there exists a smooth family (φt ) ∈ Diff(C) such that

φt : (C, TF)
∼→ (

C,Graph(ηt )
)
.

Precomposing φt with φ−1
0 , we can assume that φ0 = IdC , so that the family of

foliations Graph(ηt ) for t ∈ [0, ε] is generated by applying an isotopy to TF . Part (2)
of Lemma 1.12 now implies that .

η0 is indeed exact in
(
�•(F;G), d∇

)
. This finishes

the proof. ��
The above lemma motivates the following provisional definition.

Definition 2.7 (Provisional) When deforming C inside DefF (C), a first-order defor-
mation is a foliated one-form β ∈ �1(F) such that dFβ = 0 and �(β) is exact in(
�•(F;G), d∇

)
.

2.2.2 A canonical definition

Definition 2.7 is not entirely satisfactory, since it makes reference to the chosen com-
plement G. In what follows, we derive an equivalent definition which is completely
canonical. This is done by showing that � is a chain map (up to sign), and that the
inducedmap in cohomology is canonical (i.e., independent of the complementG). The
proofs of these statements use ingredients from the spectral sequence of the foliation
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F . We defer the proofs to Sect. 5.1 in Appendix, to avoid disrupting the flow of the
paper.

The description of the map in cohomology induced by � involves the following
well-known operation in foliation theory. Recall that any foliation F comes with a
transverse differentiation map, denoted by

dν : H•(F) → H•(F; N∗F). (6)

This map is constructed as follows [19]. If r : �•(C) → �•(F) denotes the restriction
to the leaves of F , then there is a short exact sequence of complexes

0 → (
�•
F (C), d

)
↪→ (

�•(C), d
) r→ (

�•(F), dF
) → 0.

It induces a long exact sequence in cohomology

· · · → Hk
F (C) → Hk(C) → Hk(F)

d→ Hk+1
F (C) → Hk+1(C) → Hk+1(F) → · · · .

The connecting homomorphism d is defined as

d : Hk(F) → Hk+1
F (C) : [α] �→ [dα̃], (7)

where α̃ ∈ �k(C) is any extension of α ∈ �k(F). Next, let p : �k+1
F (C) →

�k(F , N∗F) denote the map characterized by

〈
p(β)(V1, . . . , Vk), N

〉 = β(V1, . . . , Vk, N )

for V1, . . . , Vk ∈ �(TF) and N ∈ �(NF). This map is well-defined because forms
in �•

F (C) vanish when evaluated on elements of �(TF). Since p commutes with the
differentials d and d∇∗ , there is an induced map in cohomology

[p] : Hk+1
F (C) → Hk(F; N∗F). (8)

The transverse differentiation map (6) is obtained by composing the maps (7) and (8).

Definition 2.8 The transverse differentiation map dν is defined by

dν : Hk(F) → Hk(F; N∗F) : [α] �→ [p(dα̃)],

where α̃ ∈ �k(C) is any extension of α ∈ �k(F).

Remark 2.9 The map dν appears for instance in the study of symplectic foliations
(F , ω). There dν[ω] ∈ H2(F; N∗F)measures the transverse variation of the leafwise
symplectic form ω ∈ �2(F), which plays a role in the integrability problem for the
associated regular Poisson structure [8, §5].

The following result allows us to describe first-order deformations of C inside
DefF (C) in a canonical way. For the proof, we refer to Sect. 5.1 in Appendix.
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Proposition 2.10 (i) The map

� : (�•(F), dF
) → (

�•(F;G), d∇
)

is a chain map, up to sign. That is, � ◦ dF = −d∇ ◦ �.
(ii) The map [�] induced in cohomology is canonical, since it agrees with

[ − Id ⊗ (ω
�
C )−1] ◦ dν : H•(F) → H•(F; NF).

Because the map
[ − Id ⊗ (ω

�
C )−1

] : H•(F; N∗F) → H•(F; NF) appearing in
Proposition 2.10 is an isomorphism, we can now rephrase Definition 2.7 as follows.

Definition 2.11 When deformingC insideDefF (C), a first-order deformation is a foli-
ated one-form β ∈ �1(F) such that dFβ = 0 and the cohomology class [β] ∈ H1(F)

lies in the kernel of the transverse differentiation map dν : H1(F) → H1(F; N∗F).

We finish this section by giving a geometric description of first-order deformations.
For the proof, see again Sect. 5.1 in Appendix.

Lemma 2.12 LetC be amanifoldwith a foliationF . For anyβ ∈ �1(F), the following
are equivalent:

(1) dFβ = 0 and dν[β] = 0,
(2) There exists an extension β̃ ∈ �1(C) of β such that ιV dβ̃ = 0 for all V ∈ �(TF).

Recall that a differential form η on a foliated manifold (C,F) is called basic
if ιV η = 0 and £V η = 0 for all V ∈ �(TF). If the foliation F is simple, this
means that η descends to the leaf space C/F . The basic differential forms constitute
a subcomplex (�•

bas(C), d) of the de Rham complex. Statement (2) in Lemma 2.12
says that dβ̃ ∈ �2

bas(C).

Example 2.13 (The integral case) Let C be a compact coisotropic submanifold whose
characteristic foliation F is given by the fibers of a smooth fiber bundle pr : C →
C/F . Such coisotropic submanifolds are called integral, and they are studied in [20].
To facilitate the computation of first-order deformations of such C , it is useful to note
that the cohomology groups H1(F) and H1(F; N∗F) have the following convenient
descriptions [15, Thm. I.5.2].

• The first cohomology groups of the fibers of pr constitute a vector bundleH1 over
C/F , i.e.,

H1
q = H1(pr−1(q)) ∀q ∈ C/F , (9)

and H1(F) canbe identified canonicallywith the spaceof sections�(H1).Namely,
the class [β] ∈ H1(F) corresponds with the section τβ ∈ �(H1) given by

τβ : q �→ [
β|pr−1(q)

]
.
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Moreover, the vector bundle H1 carries a natural flat connection ∇, called the
Gauss–Manin connection, which is defined as follows. Denoting by X(C)F the
Lie subalgebra of (X(C), [·, ·]) consisting of projectable vector fields,

X(C)F := {Y ∈ X(C) : [Y , �(TF)] ⊂ �(TF)} ,

we have a short exact sequence

0 → �(TF) ↪→ X(C)F → X(C/F) → 0. (10)

The Gauss–Manin connection is then defined as follows, for V ∈ X(C/F):

∇V τβ := τ£Ṽ β,

where Ṽ ∈ X(C)F is any lift of V in (10). The connection is well-defined because
ofCartan’smagic formula, and it is flat because [Ṽ , W̃ ] is a lift of [V ,W ]whenever
Ṽ , W̃ ∈ X(C)F are lifts of V ,W ∈ X(C/F).

• The cohomology group H1(F , N∗F) can be identifiedwith the space of one-forms
on C/F with values in the vector bundle H1:

H1(F; N∗F) ∼= �(T ∗(C/F) ⊗ H1). (11)

We now compute the kernel of dν : H1(F) → H1(F , N∗F). Fix a class [β] ∈
H1(F), and let β̃ ∈ �1(C) be any extension of β. Denoting by r : �1(C) → �1(F)

the restriction map and using the isomorphism (11), we have

[β] ∈ ker(dν) ⇔ r(ιY dβ̃) is foliated exact for all Y ∈ X(C)F ,

⇔ £Yβ is foliated exact for all Y ∈ X(C)F ,

⇔ τβ ∈ �(H1) is flat w.r.t. ∇.

Hence, according to Definition 2.11, first-order deformations of an integral coisotropic
submanifold are closed foliated one-forms that define flat sections of the vector bundle(H1,∇)

.
In [20], Ruan studies the deformation problem of an integral coisotropic submani-

foldC , within the class of integral coisotropic submanifolds. He shows that first-order
deformations in this case are indeed closed foliated one-forms on C which define flat
sections of

(H1,∇)
, see [20, Lemma 2]. Hence, our Definition 2.11 is consistent with

Ruan’s work.

3 Unobstructedness of first-order deformations

LetC ⊂ (M, ω) be a compact coisotropic submanifold. It is known that the coisotropic
deformation problem of C is obstructed in general, i.e., there may exist first-order
deformations of C that are not tangent to any path of deformations [27]. However,
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Ruan proved that the deformation problem becomes unobstructed when restricting to
integral coisotropic submanifolds [20], i.e., those for which the characteristic foliation
is given by a fibration.

This section contains our main result, which states that the deformation problem of
a compact coisotropic submanifold C inside the class DefF (C) (see Definition 1.5) is
unobstructed. This is an extension of Ruan’s unobstructedness result, since the first-
order deformations from Definition 2.11 reduce to those considered by Ruan in case
(C,F) is integral (see Example 2.13).

Definition 3.1 Given a compact coisotropic submanifold C ⊂ (M, ω), a first-order
deformation β of C (see Definition 2.11) is unobstructed if there exists a smooth
path αt in DefUF (C) (see Definition 2.3) such that α0 = 0 and .

α0 = β. The deforma-
tion problem of C inside DefF (C) is unobstructed if all first-order deformations are
unobstructed.

As a first step, we consider the distinguished class of first-order deformations con-
sisting of foliated one-forms β ∈ �1(F) that admit a closed extension β̃ ∈ �1(C).
Such β indeed satisfy the requirements of Definition 2.11. These first-order deforma-
tions are easily proved to be unobstructed. The following lemma is just an enhancement
of [22, Rem. 4.6].

Lemma 3.2 Let C ⊂ (M, ω) be compact coisotropic submanifold with characteristic
foliation F . If β ∈ �1(F) admits a closed extension β̃ ∈ �1(C), then β is an
unobstructed first-order deformation of C.

Proof Let (U ,�G) be the Gotay local model for some choice of splitting TC =
TF ⊕G, and denote by p : U → C the projection. By assumption, we have a closed
one-form p∗β̃ on U , which gives rise to a symplectic vector field

X := (�
�
G)−1(−p∗β̃).

Let (φt ) denote the flow of X , and note that compactness of C implies that there exists
ε > 0 such that flow lines of X starting at points of C exist up to time ε. Shrinking ε

if necessary, we can assume that the submanifolds φt (C) for 0 ≤ t < ε are graphs of
sections αt ∈ �(U ). We now check that αt is a smooth path in DefUF (C), as defined
in Definition 2.3.

It is clear that Graph(αt ) is coisotropic, since C is coisotropic and the φt are sym-
plectomorphisms. It remains to check that

ψt := p ◦ φt ◦ α0 : (C, ker ωC ) → (
C, ker(ωC − d( j(αt )))

)
(12)

is a foliated diffeomorphism. To do so, note that

αt = φt ◦ α0 ◦ ψ−1
t : C → U .

Since φ∗
t �G = �G , we have

ωC = α∗
0�G = α∗

0(φ
∗
t �G) = (φt ◦ α0)

∗�G,
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and therefore

ψ∗
t (α∗

t �G) = (αt ◦ ψt )
∗�G = (φt ◦ α0)

∗�G = ωC .

Also invoking Proposition 1.4, this confirms that (12) is a foliated diffeomorphism.
Finally, we check that β is tangent to the path αt . By [22, Lemma 3.13], we have

that .α0 is the section of T ∗F defined by the vertical fiberwise constant vector field
P(X) onU . Here, P denotes the restriction toC composed with the vertical projection
in the splitting TU |C = TC ⊕ T ∗F . Using Lemma 5.6 in Appendix, we conclude
that

.
α0 = −r

(
i∗��

G(P(X))
)

= −r
(
i∗��

G(X)
)

= r(i∗(p∗β̃)) = β. (13)

Here, the second equality uses the fact that �G(TC, TF) = 0. This finishes the
proof. ��

One can use Lemma 3.2 to show that the deformation problem ofC inside DefF (C)

is unobstructed wheneverC → C/F is a fiber bundle admitting a global section. That
is to say, a special case of Ruan’s unobstructedness result for integral coisotropic sub-
manifolds follows from Lemma 3.2. We provide the details in the following example.

Example 3.3 Let C ⊂ (M, ω) be a compact coisotropic submanifold for which pr :
C → C/F is a fiber bundle admitting a global section σ . If β ∈ �1(F) is a first-order
deformation of C inside DefF (C), then according to Lemma 2.12, β has an extension
β̃ ∈ �1(C) satisfying

dβ̃ = pr∗γ

for some γ ∈ �2(C/F). Moreover, since pr ◦ σ = Id, we have

γ = σ ∗(pr∗γ ) = σ ∗(dβ̃) = d(σ ∗β̃).

This implies that β̃ − pr∗(σ ∗β̃) is a closed extension of β. By Lemma 3.2, β is
unobstructed.

A concrete example of this type is the coisotropic submanifold considered in [27].
There C is the torus T4 with presymplectic form ωC = dθ1 ∧ dθ2. The characteristic
foliation F is given by the fibers of the trivial T2-bundle

T
4 → T

2 : (θ1, θ2, θ3, θ4) �→ (θ1, θ2).

Choosing G := Span{∂θ1, ∂θ2} as a complement, C is coisotropic in the Gotay local
model

(
T
4 × R

2, dθ1 ∧ dθ2 + dθ3 ∧ dξ1 + dθ4 ∧ dξ2
)
,

where (ξ1, ξ2) are the fiber coordinates corresponding with the frame {dθ3, dθ4} of
T ∗F . It was shown in [27] that the deformation problem of C—as a coisotropic
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submanifold—is obstructed. That is, there exist closed foliated one-forms β ∈ �1(F)

that are not tangent to a path of coisotropic deformations. By contrast, the restricted
deformation problem ofC insideDefF (C) is unobstructed. That is, any closed foliated
one-form β ∈ �1(F) that gives rise to a class in the kernel of dν : H1(F) →
H1(F; N∗F) is tangent to a path of coisotropic deformations, whose characteristic
foliation is moreover diffeomorphic with F .

We now proceed to the proof of our main theorem. The argument relies on the
following lemma, which is based on a result in the forthcoming work [24].

Lemma 3.4 Let C ⊂ (M, ω) be a compact coisotropic submanifold with Gotay local
model (U ,�G). Assume that {ηt }0≤t≤ε is a smooth family of presymplectic structures
on C with

⎧
⎪⎨

⎪⎩

η0 = ωC

rk(ηt ) is constant and ker ηt = ker ωC

[ηt ] ∈ H2(C) is constant

.

Shrinking ε if necessary, there exist a smooth path {σt }0≤t≤ε ⊂ DefUF (C)with σ0 = 0,
and a smooth family of diffeomorphisms {ψt }0≤t≤ε ⊂ Diff0(C) such that ψ0 = Id
and

σ ∗
t �G = ψ∗

t ηt for all 0 ≤ t ≤ ε. (14)

The lemma gives sufficient conditions for presymplectic structures close to ωC to
be obtained from coisotropic sections of the local model (U ,�G), up to isotopy. In
other words, it gives presymplectic structures that lie in the image of the map (2),
when we quotient the codomain by the equivalence relation given by isotopies.

Proof of Lemma 3.4 For each value of t ∈ [0, ε], we can use G as a complement to
ker ηt . Constructing the associated Gotay local models, we get a family of symplectic
structures

ωt = p∗ηt + j∗ωcan,

defined on a neighborhood Ut of C ⊂ T ∗F . The tube lemma implies that the inter-
section ∩t∈[0,ε]Ut is an open neighborhood of C ; hence shrinking U if necessary, we
can assume that all ωt are symplectic on U for t ∈ [0, ε].

Since the inclusion i : C ↪→ U induces an isomorphism in cohomology and the
class [ηt ] ∈ H2(C) is constant, the same holds for the class [ωt ] ∈ H2(U ):

0 = d

dt
[ηt ] = d

dt
[i∗ωt ] = [i∗]

[
d

dt
ωt

]
⇒

[
d

dt
ωt

]
= 0.
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Choosing primitives d
dt ωt = dβt , we now apply Moser’s argument. We make the

ansatz

0 = d

dt
φ∗
t ωt = φ∗

t

(
£Xtωt + d

dt
ωt

)
= φ∗

t

(
dιXtωt + dβt

)
, (15)

where (φt ) is an isotopy with corresponding time-dependent vector field (Xt ). We can
solve the equation ιXtωt = −βt for Xt ∈ X(U ). Since C is compact, we can shrink
ε > 0 such that φ−1

t (C) is the graph of a section σt ∈ �(U ) for each 0 ≤ t ≤ ε. For
such t , the map

ft = p ◦ φ−1
t ◦ σ0 : C → C

is a diffeomorphism and we have

σt = φ−1
t ◦ σ0 ◦ f −1

t .

We claim that the pair (σt , ψt := f −1
t ) meets the requirements of the lemma. To

show that σt is a smooth path in DefUF (C) (see Definition 2.3), we first check that
Graph(σt ) ⊂ (U ,�G) is coisotropic. By the first equality in (15), we have

φ∗
t ωt = ω0 = �G,

and this implies that

σ ∗
t �G = ( f −1

t )∗(σ ∗
0 ((φ−1

t )∗�G)) = ( f −1
t )∗(σ ∗

0 ωt ) = ( f −1
t )∗ηt . (16)

This shows that the rank of σ ∗
t �G is equal to the rank of ηt , which by assumption

equals the rank ofωC . Hence,Graph(σt ) ⊂ (U ,�G) is coisotropic, by Proposition 1.4.
We also showed at the same time that the equality (14) is satisfied. It only remains to
check that the map

ft = p ◦ φ−1
t ◦ σ0 : (C, ker ωC ) → (

C, ker(ωC − d( j(σt )))
)

is a foliated diffeomorphism. With Proposition 1.4 in mind, the equality (16) shows
that

f ∗
t

(
ωC − d( j(σt ))

) = ηt ,

hence ft takes the foliation ker ηt = ker ωC to the foliation ker(ωC − d( j(σt ))). ��
At last, we can prove our main result.

Theorem 3.5 If C ⊂ (M, ω) is a compact coisotropic submanifold, then the deforma-
tion problem of C inside DefF (C) is unobstructed.
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Proof Let β be a first-order deformation of C , as defined in Definition 2.11. We will
construct a smooth path αt in DefUF (C) such that α0 = 0 and .

α0 = β.
By Lemma 2.12, β has an extension β̃ ∈ �1(C) satisfying ιV dβ̃ = 0 for all

V ∈ �(TF). Consider the family of two-forms {ωC − tdβ̃}t≥0 onC . By compactness,
there exists ε > 0 such that rk(ωC − tdβ̃)p ≥ rk(ωC )p for all 0 ≤ t ≤ ε and p ∈ C .
But we also know that ker ωC ⊂ ker(ωC − tdβ̃), so rk(ωC − tdβ̃)p ≤ rk(ωC )p for
all p ∈ C and t ≥ 0. In conclusion, for all 0 ≤ t ≤ ε, the two-form ωC − tdβ̃ is
presymplectic with the same kernel as ωC .

We now apply Lemma 3.4. Shrinking ε if necessary, there exist a smooth path
{σt }0≤t≤ε in DefUF (C) with σ0 = 0 and a smooth family of diffeomorphisms
{ψt }0≤t≤ε ⊂ Diff0(C) such that ψ0 = Id and

ψ∗
t

(
ωC − tdβ̃

)
= ωC − d( j(σt ). (17)

Let (Xt ) be the time-dependent vector field of (ψt ). Differentiating the equality (17)
gives

ψ∗
t

(
£Xt (ωC − tdβ̃) − dβ̃

)
= −d ( j (

.
σt )) .

Evaluating at t = 0, we get

£X0ωC − dβ̃ = −d ( j (
.

σ0))

and therefore

d
(
ιX0ωC − β̃ + j (

.
σ0)

)
= 0.

Let us denote the closed one-form between brackets by θ ∈ �1(C). It gives rise to
a symplectic vector field Z := (�

�
G)−1(p∗θ) on (U ,�G), with flow (φt ). Shrinking

ε if necessary, we can make sure that the submanifolds φt (Graph(σt )) are graphs of
sections αt ∈ �(U ).

We claim that αt is a smooth path in DefUF (C). It is clear that Graph(αt ) ⊂ (U ,�G)

is coisotropic, since Graph(σt ) is coisotropic and φt is a symplectomorphism. Because
σt is a smooth path inDefUF (C), there exists a smooth path of embeddings�t : C ↪→ U
such that Graph(σt ) = �t (C) and

p ◦ �t : (C, ker ωC ) → (
C, ker(ωC − d( j(σt )))

)
(18)

is a foliated diffeomorphism. To conclude that αt is a smooth path in DefUF (C), it
suffices to check that the embeddings φt ◦ �t : C ↪→ U are such that

p ◦ φt ◦ �t : (C, ker ωC ) → (
C, ker(ωC − d( j(αt )))

)
(19)
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is a foliated diffeomorphism. To do so, we argue as in the proof of Lemma 3.2. Let us
first define diffeomorphisms

ft := p ◦ φt ◦ σt , (20)

so that

αt = φt ◦ σt ◦ f −1
t . (21)

Because φ∗
t �G = �G , we have

σ ∗
t �G = σ ∗

t (φ∗
t �G) = (φt ◦ σt )

∗�G = (αt ◦ ft )
∗�G = f ∗

t (α∗
t �G),

hence by Proposition 1.4 this shows that

ft : (C, ker(ωC − d( j(σt )))
) → (

C, ker(ωC − d( j(αt )))
)

is a foliated diffeomorphism. Composing with (18), we get a foliated diffeomorphism

ft ◦ p ◦ �t : (C, ker ωC ) → (
C, ker(ωC − d( j(αt )))

)
.

Since by (20), we have

ft ◦ p ◦ �t = (p ◦ φt ◦ σt ) ◦ p ◦ �t = p ◦ φt ◦ �t ,

this confirms that (19) is a foliated diffeomorphism. Hence, αt is a smooth path in
DefUF (C).

At last, we check that β is tangent to the path αt . We denote by P the vertical
projection induced by the splitting T (T ∗F)|C = TC ⊕ T ∗F . Using the expression
(21) and the chain rule, we get for q ∈ C that

.
α0(q) = P (

.
α0(q))

= P

(
d

dt

∣∣∣∣
t=0

(φt ◦ σt ◦ f −1
t )(q)

)

= P

(
d

dt

∣∣∣∣
t=0

φt (q) + d

dt

∣∣∣∣
t=0

σt (q) + d

dt

∣∣∣∣
t=0

f −1
t (q)

)

= P (Z(q)) + .
σ0(q). (22)

Here, we used that the last summand in the third line above is tangent toC . By Lemma
5.6 in the Appendix, we have that P(Z) ∈ �(T ∗F) is the restriction to TF of the
one-form −θ ∈ �1(C), see the computation (13). That is,

P(Z) = β − .
σ0,
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and inserting this equality into (22), we obtain that .α0(q) = β(q), as desired. ��
Remark 3.6 The coisotropic sections σt obtained in Lemma 3.4 are not uniquely deter-
mined since they depend on a choice of primitive, as the proof of Lemma 3.4 shows.
Nevertheless, the proof of Theorem 3.5 shows that any path σt thus obtained can be
used to prolong a first-order deformation β, up to modifying the σt suitably by a
symplectic isotopy.

Alternatively, instead of using the conclusion of Lemma 3.4, one can prove Theo-
rem 3.5 by running the proof of Lemma 3.4 explicitly using a well-chosen primitive.
Then, the coisotropic sections σt obtained this way do not need to be corrected any-
more by a symplectic isotopy. This approach yields a simple algorithmwhich produces
out of a first-order deformation β a path {σt } in DefUF (C) with σ0 = 0 and .

σ0 = β. It
consists of the following steps:

(1) Fix an extension β̃ ∈ �1(C) of β as in Lemma 2.12.
(2) For small enough t , the two-forms

ωt := p∗(ωC − tdβ̃) + j∗ωcan = �G − tp∗dβ̃

are symplectic on a neighborhood ofC ⊂ T ∗F . There, one can solve the equation

ιXtωt = p∗β̃. (23)

(3) Let (φt ) be the flow of Xt . For small enough t , we have φ−1
t (C) = Graph(σt ) for

a smooth path σt in DefUF (C). Now β = .
σ0.

We have to justify that β = .
σ0. Since the time-dependent vector field of the isotopy

(φ−1
t ) is Zt := −(φ−1

t )∗Xt , it follows from [22, Lemma 3.13] that .
σ0 is the foliated

one-form defined by P(Z0) = −P(X0), where P is the vertical projection along the
zero section C ⊂ T ∗F . By Lemma 5.6, the latter is given by

r(i∗��
G(P(X0))) = r(i∗��

G(X0)). (24)

The equality (23) says that

�
�
G(Xt ) = t ιXt p

∗dβ̃ + p∗β̃,

hence �
�
G(X0) = p∗β̃. Inserting this in the expression (24), we obtain

.
σ0 = r(i∗ p∗β̃) = r(β̃) = β.

4 Implications for the coisotropic deformation problem

We discuss what Theorem 3.5 tells us about the classical coisotropic deformation
problem, which allows all coisotropic deformations of C instead of just those whose
characteristic foliation is diffeomorphic with F . First, Theorem 3.5 gives a partial
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unobstructedness result in this context, for which we provide some examples. Second,
Theorem 3.5 implies that the Kuranishi map of the L∞-algebra governing coisotropic
deformations of C should vanish on elements of ker(dν). We confirm that this is the
case, by establishing a canonical description for the Kuranishi map in terms of the
transverse differentiation map dν .

4.1 A partial unobstructedness result

Let C ⊂ (M, ω) be a compact coisotropic submanifold with characteristic folia-
tion F . As recalled in Sect. 1.3.1, first-order deformations of C—as a coisotropic
submanifold—are closed foliated one-forms onF , and these are generally obstructed.
It is however clear geometrically that a first-order deformation is unobstructed if it
admits a closed extension, see [22, Rem. 4.6] or the proof of Lemma 3.2. Let us state
this result for future reference.

Lemma 4.1 Let C ⊂ (M, ω) be a compact coisotropic submanifold. Any first-order
deformationβ ∈ �1(F) ofC admitting a closed extension β̃ ∈ �1(C) is unobstructed.

By Theorem 3.5 and Definition 2.11, we obtain the following partial unobstructed-
ness result, which extends Lemma 4.1.

Corollary 4.2 Let C ⊂ (M, ω) be a compact coisotropic submanifold. Any first-order
deformation β ∈ �1(F) of C whose cohomology class [β] ∈ H1(F) lies in the kernel
of the transverse differentiation map dν : H1(F) → H1(F; N∗F) is unobstructed.

The following example illustrates howwe can useCorollary 4.2 to find unobstructed
first-order deformations which cannot be detected with Lemma 4.1.

Example 4.3 Let C2n−q ⊂ (M2n, ω) be a compact coisotropic submanifold of q-
contact type, as introduced in Example 1.9. So there exist α1, . . . , αq ∈ �1(C) such
that:

(1) dαi = ωC for i = 1, . . . , q.
(2) α1 ∧ . . . ∧ αq ∧ ω

n−q
C is nowhere zero on C .

Assume moreover that q < n, to exclude the possibility that C is Lagrangian. As
before, we denote r : �1(C) → �1(F) the restriction map. We claim that the foliated
one-forms r(α1), . . . , r(αq) are unobstructed first-order deformations of C by virtue
of Corollary 4.2. We also claim that none of them admits a closed extension, showing
that this unobstructedness result cannot be obtained via Lemma 4.1.

First note that item (1) implies that r(αi ) is leafwise closed, so it indeed defines a
first-order deformation of C . Moreover, the extension αi ∈ �1(C) of r(αi ) ∈ �1(F)

is such that dαi = ωC ∈ �2
bas(C). Hence, it follows from Lemma 2.12 that [r(αi )] ∈

H1(F) lies in the kernel of dν . By Corollary 4.2, the first-order deformations r(αi ) of
C are unobstructed.

We now argue that the r(αi ) do not admit closed extensions. The crucial observation
is that the characteristic foliationF of C is taut, i.e., there exists a Riemannian metric
on C such that all the leaves of F become minimal submanifolds.
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Claim: The characteristic foliation F is taut.
To prove the claim, recall that by Rummler’s criterion [4, Thm. 10.5.9], a q-
dimensional foliation F on C is taut exactly when there exists γ ∈ �q(C) such
that:

(i) γ restricts to a volume form on each leaf of F ,
(ii) γ is F-closed, i.e., dγ (V1, . . . , Vq+1) = 0 whenever at least q of the arguments

V1, . . . , Vq+1 are tangent to F .

In the q-contact case, we can take γ := α1 ∧ . . . ∧ αq ∈ �q(C). Requirement (2)
states that α1 ∧ . . .∧αq is nowhere zero when restricted to ker ωC = TF . This means
that α1 ∧ . . . ∧ αq restricts to a volume form on each leaf of F . Moreover, evaluating

d(α1 ∧ . . . ∧ αq) =
q∑

i=1

(−1)i+1α1 ∧ . . . ∧ αi−1 ∧ ωC ∧ αi+1 ∧ . . . ∧ αq

on vector fields V1, . . . , Vq+1, at least q of which are tangent toF , gives zero. Indeed,
the factor ωC gets paired with two vector fields, at least one of which belongs to
TF = ker ωC .

The above claim ensures that the class [ωC ] ∈ H2
bas(C) is non-trivial. Indeed,

if F is a taut codimension 2m foliation on a compact oriented manifold C , such
that F is defined by a closed two-form ωC ∈ �2(C), then the cohomology classes
[ωk

C ] ∈ H2k
bas(C) for k = 1, . . . ,m are non-trivial [25, Thm. 4.33]. In the q-contact

setting, the manifold C is indeed oriented because α1 ∧ . . . ∧ αq ∧ ω
n−q
C is a volume

form on C .
We can now show that r(αi ) does not admit a closed extension. Assume by contra-

diction that βi is a closed extension of r(αi ). Then, αi − βi ∈ �1
bas(C), because for

V ∈ �(TF) we have ιV (αi − βi ) = 0 and

£V (αi − βi ) = ιV d(αi − βi ) = ιV dαi = ιVωC = 0.

It follows that the basic form d(αi − βi ) = ωC has a basic primitive αi − βi , i.e.,
the class [ωC ] ∈ H2

bas(C) is trivial. This is a contradiction, so r(αi ) has no closed
extension.

Clearly, Lemma 4.1 does not yield many unobstructed first-order deformations in
practice. It only concerns closed β ∈ �1(F)whose cohomology class lies in the image
of the restriction map [r ] : H1(C) → H1(F), and the latter is a finite dimensional
subspace of H1(F).

By contrast, the kernel of dν : H1(F) → H1(F; N∗F) is infinite dimensional
in general.1 Hence, Corollary 4.2 has the potential to generate considerably more
unobstructed first-order deformations. The following is an example in which ker(dν)

is infinite dimensional.

1 Note however that in the integral coisotropic setting considered by Ruan [20], this space is always finite
dimensional. Indeed, if (C,F) is integral then ker(dν) reduces to the space of flat sections of (H1,∇), see
Example 2.13. The latter is a finite dimensional vector space.
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Example 4.4 Consider T
3 endowed with the presymplectic form dθ2 ∧ (dθ3 −

cos(θ2)dθ1). The associated foliation is given by

TF := Span{∂θ1 + cos(θ2)∂θ3}.

Hence, for every fixed value of θ2, we get either an S1-fibration or aKronecker foliation
on (T2, θ1, θ3), depending on whether cos(θ2) is rational or irrational. The conormal
bundle is N∗F = Span{dθ2, dθ3 − cos(θ2)dθ1}, so we can use {dθ1} as a frame for
T ∗F = T ∗

T
3/N∗F . Embedding this presymplecticmanifold in itsGotay localmodel,

it becomes a coisotropic submanifold. We claim that ker(dν) is infinite dimensional
in this example.

The map dν : H1(F) → H1(F; N∗F) is given by

dν[gdθ1] =
[
− ∂g

∂θ2
dθ1 ⊗ dθ2 − ∂g

∂θ3
dθ1 ⊗ (dθ3 − cos(θ2)dθ1)

]
. (25)

To see which elements are trivial in H1(F; N∗F), note that for k, l ∈ C∞(T3) we
have

〈
d∇∗

(
kdθ2 + l(dθ3 − cos(θ2)dθ1)

)(
∂θ1 + cos(θ2)∂θ3

)
, ∂θ2

〉

= ∂k

∂θ1
+ cos(θ2)

∂k

∂θ3
− sin(θ2)l (26)

and

〈
d∇∗

(
kdθ2 + l(dθ3 − cos(θ2)dθ1)

)(
∂θ1 + cos(θ2)∂θ3

)
, ∂θ3

〉
= ∂l

∂θ1
+ cos(θ2)

∂l

∂θ3
.

(27)

We will now focus on foliated one-forms of the type g(θ2)dθ1.
If such a class [g(θ2)dθ1] lies in the kernel of dν : H1(F) → H1(F; N∗F), then

(25), (26) and (27) give

{
∂k
∂θ1

+ cos(θ2) ∂k
∂θ3

− sin(θ2)l = −g′(θ2)
∂l
∂θ1

+ cos(θ2) ∂l
∂θ3

= 0
, (28)

for some k, l ∈ C∞(T3). For a fixed value θ2 = θ02 , the second equation in (28)
says that l(θ1, θ02 , θ3) is a basic function for the foliated manifold

(
T
2,Span{∂θ1 +

cos(θ02 )∂θ3}
)
. This implies that l(θ1, θ02 , θ3) is constant when cos(θ02 ) is irrational.

Since the set of θ02 ∈ S1 for which cos(θ02 ) is irrational is dense in S1, it follows that
the system of equalities

{
∂

∂θ1
l(θ1, θ2, θ3) = 0

∂
∂θ3

l(θ1, θ2, θ3) = 0
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holds on a dense subset of T3, hence on all of T3. It follows that l = l(θ2). The first
equation in (28) then implies that

∂k

∂θ1
+ cos(θ2)

∂k

∂θ3
= sin(θ2)l(θ2) − g′(θ2),

so integrating around tori S1 × {θ2} × S1 we see that both sides must be zero. In
conclusion,

[g(θ2)dθ1] ∈ ker(dν) ⇔ g′(θ2) = l(θ2) sin(θ2) for some l ∈ C∞(S1).

Let us now consider the subspace

Span
{[cosn(θ2)dθ1] : n ≥ 0

} ⊂ ker(dν). (29)

We claim that it is infinite dimensional. If not, then there would existm ∈ N such that

[dθ1], [cos(θ2)dθ1], . . . , [cosm(θ2)dθ1]

are linearly dependent. So there exist c0, . . . , cm ∈ R, not all zero, such that

m∑

i=0

ci cos
i (θ2) = ∂h

∂θ1
+ cos(θ2)

∂h

∂θ3

for some h ∈ C∞(T3). Integrating over the tori S1 × {θ2} × S1, this implies that

m∑

i=0

ci cos
i (θ2) = 0.

But the polynomial
∑m

i=0 ci x
i has at mostm roots, whereas cos(θ2) takes on infinitely

many values as θ2 ranges over S1. Hence, we reach a contradiction, and therefore the
subspace (29) is infinite dimensional. The same then holds for ker(dν).

We finish this subsection by highlighting a particular case of Corollary 4.2, which
is important in the spirit of this note. Given a compact coisotropic submanifold
C ⊂ (M, ω), we noted in Sect. 1.3.2 that the presymplectic form ωC induces an
isomorphism H1(F; N∗F) ∼= H1(F; NF). Therefore, Corollary 4.2 implies that the
coisotropic deformation problem of C is unobstructed when H1(F; NF) vanishes.
The latter condition is the infinitesimal requirement for rigidity of the foliation F , see
Definition 1.14.

Corollary 4.5 Let C ⊂ (M, ω) be a compact coisotropic submanifold with charac-
teristic foliation F . If H1(F; NF) vanishes, then the deformation problem of C is
unobstructed.

We now display a non-trivial example of this type.
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Example 4.6 We revisit certain suspension foliations on mapping tori which were
shown to be rigid in [11]. We find conditions under which such a foliation F is
given by the kernel of a presymplectic form. Gotay’s theorem then guarantees that
the mapping torus in question arises as a coisotropic submanifold with characteristic
foliation F .

Pick a matrix A ∈ SL(n,Z), where n ≥ 2, which is diagonalizable over R with
positive eigenvalues. Denote the eigenvalues by

μ1, . . . , μp, λ1, . . . , λq ,

where p + q = n. We view A as a diffeomorphism of the torus Tn . Pick independent
linear vector fields X1, . . . , X p,Y1, . . . ,Yq ∈ X(Tn) such that2

{
A∗X j = μ j X j ,

A∗Yk = λkYk .

The foliation Span{X1, . . . , X p} onTn is invariant under A, hence the product foliation
Span{X1, . . . , X p, ∂t } on T

n × R descends to a foliation F on the mapping torus

TA := T
n × R

(θ, t) ∼ (A(θ), t + 1)
. (30)

Assume moreover that the matrix A satisfies the following two conditions:

(1) The eigenvalues λk and the quotients λk/μ j are different from 1.
(2) There is a basis of Rn given by eigenvectors v1, . . . , vp, w1, . . . , wq of A (cor-

responding respectively to the eigenvalues μ1, . . . , μp, λ1, . . . , λq ) with the
property that for any i = 1, . . . , p, the coordinates v1i , . . . , v

n
i of vi are linearly

independent over Q.

Under these assumptions, also the eigenvalues μ1, . . . , μp are different from 1, and
therefore A is anAnosovdiffeomorphismofTn . If the eigenvalues of A are all different,
then condition (2) is satisfied exactly when the characteristic polynomial of A is
irreducible over Q.

The main result of [11] is that, under conditions (1) and (2), the foliation F is
rigid. The proof proceeds by showing that the Bott complex

(
�•(F; NF), d∇

)
admits

“tame” homotopy operators; this implies in particular that H1(F; NF) vanishes. To
realize (TA,F) as an instance of Corollary 4.5, we have to find out whenF is defined
by a presymplectic form.

Claim: The foliation F is defined by a presymplectic form on TA exactly when the
multiset {λ1, . . . , λq} has the following property: if ξ occurs with multiplicitym, then
also 1/ξ occurs with multiplicity m.

Recall that all eigenvalues are assumed to be positive and different from 1. Hence, the
property mentioned in the claim implies in particular that q is even, as it should be.

2 Put differently, X j (resp. Yk ) is a vector field whose coefficients are constant, given by the components
of an eigenvector of A for the eigenvalue μ j (resp. λk ).
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To prove the claim, we denote by {α1, . . . , αp, β1, . . . , βq} the frame of T ∗
T
n dual to

the frame {X1, . . . , X p,Y1, . . . ,Yq} of TTn . This way, we obtain a frame

{
dt, μ−t

1 α1, . . . , μ
−t
p αp, λ

−t
1 β1, . . . , λ

−t
q βq

}
(31)

for T ∗
TA. These are indeed 1-forms on T

n × R invariant under the identification in
(30).

(i) For the forward implication, assume that ω is a presymplectic form on TA with
kernel TF . Expressing ω in the frame (31) gives an equation of the form

ω =
∑

i< j

fi j (θ, t)λ−t
i λ−t

j βi ∧ β j ,

where fi j satisfies

fi j
(
A(θ), t + 1

) = fi j (θ, t). (32)

We now assert that, if fi j is not identically zero, then λiλ j = 1. To prove this,
note that since £∂tω vanishes, we have

fi j
(
A(θ), t

)
λ−t
i λ−t

j = fi j
(
A(θ), t + 1

)
λ−t−1
i λ−t−1

j = fi j (θ, t)λ−t−1
i λ−t−1

j ,

where we also used (32). This implies that

λiλ j fi j
(
A(θ), t) = fi j (θ, t). (33)

Now take a rational point (θ1, . . . , θn) ∈ Q
n/Zn . Such a point is periodic for

A. Indeed, it can be written as (p1/q, . . . , pn/q) for some 0 ≤ p j < q, and
applying iterates of A to it yields values in the finite set

{
(q1/q, . . . , qn/q) : 0 ≤ q j < q

}
.

Hence, the equality (33) implies that for any point (θ1, . . . , θn, t) ∈ Q
n/Zn ×R,

there exists an integer k ≥ 1 such that

(λiλ j )
k fi j (θ, t) = fi j (θ, t). (34)

If fi j is not identically zero, then there exists a point (θ1, . . . , θn, t) ∈ Q
n/Zn×R

where fi j does not vanish. Hence, the equality (34), along with the fact that the
eigenvalues are positive, yields that λiλ j = 1. The assertion is proved.
This shows that, if ξ occurs in the list {λ1, . . . , λq}, then also 1/ξ occurs in
that list. For otherwise, there would exist j ∈ {1, . . . , q} so that the vector field
ξ t Y j ∈ X(TA) lies in the kernel of ω, while also being transverse to F . To show
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that the multiplicities of ξ and 1/ξ agree, we can assume that they are given by
k and l respectively, and that

λ1 = · · · = λk = ξ and λk+1 = · · · = λk+l = 1/ξ.

We know that the presymplectic form ω defines an isomorphism

ω� : Span{λt1Y1, . . . , λtqYq
} ∼−→ Span

{
λ−t
1 β1, . . . , λ

−t
q βq

}
,

and that at every point, it takes the subspace spanned by ξ t Y1, . . . , ξ t Yk into the
subspace spanned by (1/ξ)−tβk+1, . . . , (1/ξ)−tβk+l . Hence, l ≥ k. Because
the argument is symmetric in ξ and 1/ξ , it follows that l = k. This proves the
forward implication.

(ii) For the backward implication, we have by assumption that q = 2k. Moreover,
after renumbering the elements of the list λ1, . . . , λq , we can assume that it is
given by

λ1, . . . , λk, λk+1 = λ−1
1 , . . . , λq = λ−1

k .

We can then write down a well-defined two-form ω ∈ �2(TA), given by

ω =
k∑

i=1

βi ∧ βk+i .

Note that the βi ∈ �1(Tn) are closed, since they are part of the frame dual to
the commuting frame {X1, . . . , X p,Y1, . . . ,Yq} of TTn . This implies that ω is
also closed. Clearly, the kernel of ω is given by TF . This proves the backward
implication.

Let us now give a concrete example of the type we just described. To find a matrix
A ∈ SL(n,Z) which satisfies the property mentioned in the claim above, it is use-
ful to consider symplectic matrices. These always have determinant equal to 1 [17,
Lemma 1.1.15], and their characteristic polynomial has the property that, if ξ is a root
of multiplicity m, then also 1/ξ is a root of the same multiplicity [17, Lemma 2.2.2].
Take for instance.3

3 A useful way to construct symplectic matrices is the following [9, Example 17] Let X and Y be two
symmetric n × n matrices, with X invertible. Then,

S :=
(
X + Y X−1Y Y X−1

X−1Y X−1

)

is a symplectic matrix. The matrix A above is obtained by taking

X =
(
1 0
0 1

)
, Y =

(
1 1
1 0

)
.
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A :=

⎛

⎜⎜
⎝

3 1 1 1
1 2 1 0
1 1 1 0
1 0 0 1

⎞

⎟⎟
⎠ ∈ SL(4,Z).

The eigenvalues are

μ ≈ 4.39, μ−1, λ ≈ 1.84, λ−1,

in particular they are all distinct. The characteristic polynomial is

X4 − 7X3 + 13X2 − 7X + 1.

Its image in (Z/2Z)[X ] is the irreducible polynomial X4 + X3 + X2 + X + 1, hence
the characteristic polynomial is irreducible over Z and therefore over Q. It follows
that the assumptions (1) and (2) from [11] are satisfied. Hence, taking for instance
linear vector fields X1, X2 on T

4 satisfying

{
A∗X1 = μX1

A∗X2 = μ−1X2
,

the associated suspension foliation F on the mapping torus TA is rigid. Now pick
a presymplectic form ω on TA with kernel TF and embed (TA, ω) coisotropically
into its Gotay local model. The result is a coisotropic submanifold whose deformation
problem is unobstructed.

Remark 4.7 The fact that the deformation problem of the coisotropic submanifolds
from Example 4.6 is unobstructed also follows from Lemma 4.1, because the restric-
tion

H1(TA) → H1(F) (35)

is surjective. To see why, we recall that leafwise cohomology of suspension foliations
can be computed explicitly using aMayer–Vietoris argument, see [2, §1.3.3]. Denoting
by F0 the foliation on T

n given by

TF0 = Span{X1, . . . , X p},

one gets

H1(F) = ker
(
Id − [A∗] : H1(F0) → H1(F0)

)

⊕ H0(F0)

im
(
Id − [A∗] : H0(F0) → H0(F0)

) . (36)
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The assumptions (1) and (2) from [11] (recalled in Example 4.6) ensure that F0
is a so-called Diophantine linear foliation on T

n , and leafwise cohomology of such
foliations was computed in [1] (see also [2, Thm. 1.3.7]). Continuing in the notation
of Example 4.6, one has

H1(F0) = R[r(α1)] ⊕ · · · ⊕ R[r(αp)],

where r : �1(Tn) → �1(F0) is the restriction map. Because A∗α j = μ jα j and
μ1, . . . , μq are different from1, it follows that themap Id−[A∗] : H1(F0) → H1(F0)

is injective, hence the first summand in (36) vanishes. Because the leaves of F0 are
dense, H0(F0) consists of just the constant functions on T

n . Hence, the expression
(36) shows that H1(F) ∼= R.

A representative is given by the restriction of dt to the leaves of F . To see that
this is a non-exact foliated one-form, let L be the leaf of F through a rational point
(θ, t) ∈ TA, i.e., θ ∈ Q

n/Zn . The flow line of ∂t through (θ, t) stays inside L and is
closed, because θ is a periodic point for A (see Example 4.6(i)). By Stokes’ theorem,
the restriction of dt to the leaf L cannot be exact. Since H1(F) is spanned by the class
of dt , it is now clear that the restriction map (35) is indeed surjective.

4.2 The Kuranishi criterion

In this subsection, we recall that the deformation problem of a coisotropic submanifold
C ⊂ (M, ω) is governed by a suitable L∞[1]-algebra. The latter comes with a tool that
allows one to detect obstructed first-order deformations, called the Kuranishi criterion.
We check that the partial unobstructedness result from Corollary 4.2 is consistent with
this criterion.

Definition 4.8 (i) An L∞[1]-algebra is a Z-graded vector space W , equipped with
a collection of graded symmetric multibrackets (λk : W⊗k → W )k≥1 of degree
1 which satisfy a collection of relations [16] called higher Jacobi identities.

(ii) The Maurer–Cartan series of an element w ∈ W of degree 0 is the infinite
sum

MC(w) :=
∞∑

k=1

1

k!λk(w
⊗k).

A Maurer–Cartan element is a degree zero element w ∈ W for which the
Maurer–Cartan series converges to zero.

(iii) We say that an L∞[1]-algebra (
W , {λk}

)
governs a certain deformation problem

if small deformations correspond with Maurer–Cartan elements of
(
W , {λk}

)
.

Remark 4.9 The higher Jacobi identities mentioned above imply in particular that λ1
is a differential, which gives rise to cohomology groups H(W ). Moreover, the binary
bracket λ2 descends to the cohomology H(W ), and this fact which will be essential
in the sequel.
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Oh and Park showed in [18] that every coisotropic submanifold C ⊂ (M, ω) has
an attached L∞[1]-algebra structure. We recall an elegant description of it in terms
of derived brackets, which is due to Cattaneo and Felder [7]. The L∞[1]-algebra
associated with C ⊂ (M, ω) is obtained using the Gotay local model (U ,�G), for
a choice of complement G to the characteristic foliation TF on C . Its multibrackets
{λk}k≥1 are defined on the graded vector space �(∧T ∗F)[1], by the formula4

λk(ξ1, . . . , ξk) = P ([[· · · [�G, ξ1], · · · , ξk−1], ξk]) . (37)

Here �G := −�−1
G denotes the Poisson structure corresponding with �G , and we

consider the sections ξi ∈ �(∧T ∗F) as vertical fiberwise constant multivector fields
on T ∗F via the correspondence in Rem. 5.7. The bracket [−,−] appearing in (37)
is the Schouten-Nijenhuis bracket of multivector fields, and the map P acts on mul-
tivector fields by first restricting them to C and then taking the vertical projection
�(∧•T (T ∗F)|C ) → �(∧•T ∗F) coming from the splitting T (T ∗F)|C = TC⊕T ∗F .
While the work of Oh-Park addresses formal deformations of C , it was shown by
Schätz-Zambon in [21] that the L∞[1]-algebra (

�(∧T ∗F)[1], {λk}
)
actually governs

the smooth coisotropic deformation problem of C .

Proposition 4.10 ([21]) Let C ⊂ (M, ω) be a coisotropic submanifold with Gotay
local model (U ,�G). For any α ∈ �(T ∗F) whose graph is contained in U, the
Maurer–Cartan series MC(−α) is pointwise convergent. For such α, the following
are equivalent:

(1) Graph(α) is coisotropic in (U ,�G),
(i) The Maurer–Cartan series MC(−α) converges to zero.

The differential λ1 is just the leafwise de Rham differential dF up to sign, see [21,
Proof of Prop. 3.5]. Hence, the linearization of the Maurer–Cartan equation is just the
closedness condition with respect to dF . This is another way to see that first-order
deformations ofC are closed foliated one-formsβ ∈ �1(F), a result whichwe already
proved in Lemma 1.10.

If β ∈ �1(F) is an unobstructed first-order deformation of C , then there exists
a smooth path αt of coisotropic sections of (U ,�G) starting at α0 = 0, satisfying
.
α0 = β. By Proposition 4.10,−αt is aMaurer–Cartan element of

(
�(∧T ∗F)[1], {λk}

)

for all t . Differentiating twice the equality

MC(−αt ) = 0

and evaluating at time t = 0, it follows thatλ2(β, β) is exact in
(
�(F), dF

)
. This is the

Kuranishi criterion for unobstructedness of a first-order deformation [18, Thm. 11.4].

Proposition 4.11 The Kuranishi map of the L∞[1]-algebra (
�(∧T ∗F)[1], {λk}

)
is

Kr : H1(F) → H2(F) : [β] �→ [λ2(β, β)].
4 The graded vector space �(∧T ∗F)[1] is just �(∧T ∗F) up to degree shift. Namely, a degree k element
of �(∧T ∗F)[1] lives in �(∧k+1T ∗F).
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If β ∈ �1(F) is an unobstructed first-order deformation of C, then Kr([β]) vanishes.

We know from Corollary 4.2 that first-order deformations β whose cohomology
class lies in the kernel of dν : H1(F) → H1(F; N∗F) are unobstructed. Hence,
we should have that ker(dν) ⊂ ker(Kr). In the following, we double-check that this
inclusion holds.

We will actually prove a more interesting result. It is clear from the expression (37)
that the multibrackets λk of the L∞[1]-algebra (

�(∧T ∗F)[1], {λk}
)
depend on the

choice of complement G to TF . By contrast, we will show that the Kuranishi map
admits a canonical description in terms of the presymplectic form ωC and the map
dν . This result highlights once more the role played by the transverse differentiation
map dν in the coisotropic deformation problem, and it will imply in particular that
ker(dν) ⊂ ker(Kr).

Proposition 4.12 Let C ⊂ (M, ω) be a coisotropic submanifold. Choose a comple-
ment G to the characteristic distribution TF , and let (�(∧T ∗F)[1], {λk}) denote
the L∞[1]-algebra associated with the corresponding Gotay local model. Its binary
bracket satisfies

λ2(α, β) = −〈〈(
Id ⊗ (ω

�
C )−1)(τ (d1,0α)), τ (d1,0β)

〉〉
, α, β ∈ �1(F). (38)

In the statement of the proposition, we denoted by 〈〈•, •〉〉 the duality pairing

�k(F;G) × �l(F;G∗) → �k+l(F) : (η ⊗ Y , ξ ⊗ γ
) �→ 〈γ,Y 〉η ∧ ξ. (39)

Bywriting τ◦d1,0,we used the bi-degree language introduced in Sect. 5.1 ofAppendix.

Remark 4.13 The original paper [18] by Oh-Park contains a formula for λ2 which
looks somewhat similar to (38). However, the Oh-Park formula depends not only on
the choice of complement G, but also on a choice of coordinates, since it involves a
non-canonical connection defined in a suitable chart. By contrast, the expression (38)
is global, due to the fact that it uses the operator d1,0 instead of the aforementioned local
connection. It is easy to check that, when expressed in coordinates, our equation (38)
reduces to the formula given by Oh-Park, hence it provides an invariant description
for the latter.

Proof of Proposition 4.12 Using the definition (37) of λ2 and the identification in
Lemma 5.6 between sections of T ∗F and vertical fiberwise constant vector fields
on U , we have

λ2(α, β) = P
[[

�G,�
�
G(p∗( j(α)))

]
,�

�
G(p∗( j(β)))

]
.
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By Rem. 5.7, the associated foliated two-form is

r
(
i∗

(
∧2�

�
G

(
P
[[

�G,�
�
G(p∗( j(α)))

]
,�

�
G(p∗( j(β)))

])))

= r
(
i∗

(
∧2�

�
G

([[
�G ,�

�
G(p∗( j(α)))

]
,�

�
G(p∗( j(β)))

])))

= −r
(
i∗

(
∧2�

�
G

[
∧2 �

�
G(p∗(d( j(α)))),�

�
G(p∗( j(β)))

]))
. (40)

In the first equality, we used that�G(TC, TF) = 0, and the second equality uses that
∧�

�
G intertwines [�G, •] and−d (see [10, Lemma 2.1.3]). To simplify the expression

(40), note that for γ1, γ2, γ3 ∈ �1(U ), we have

[ ∧2 �
�
G(γ1 ∧ γ2),�

�
G(γ3)

] = ∧2�
�
G

[
γ1 ∧ γ2, γ3

]
�G

, (41)

where [•, •]�G denotes the Koszul bracket associated with �G (see [23, §4.1]). The
identity (41) is proved using the derivation rules for the Schouten bracket and the
Koszul bracket, along with the fact that��

G intertwines these brackets when applied to
vector fields and one-forms, respectively. Consequently, the expression (40) becomes

−r
(
i∗

[
p∗(d( j(α))), p∗( j(β))

]
�G

)
.

To simplify this further, we will first study the Poisson structure �G along the zero
section.

Claim 1: The bivector field Z := ∧2 p∗(�G |C ) ∈ �(∧2TC) actually lies in
�(∧2G). It is characterized by the requirement that Z � : G∗ → G equals −(ω

�
C )−1.

We prove the claim, starting from the decomposition T ∗F |C = TC ⊕T ∗F = (TF ⊕
G) ⊕ T ∗F . As shown in the proof of [12, Prop. 2.14], the symplectic form �G

decomposes as follows at points x ∈ C :

(�G)x =
TxF Gx T ∗

x F( )TxF 0 0 A
Gx 0 B 0
T ∗
x F −A 0 0

,

for invertible matrices A, B. Note that BT represents the isomorphismω
�
C : G → G∗.

Consequently, the Poisson structure �G decomposes as follows at points x ∈ C :

(�G)x = − (�G)−1
x =

T ∗
x F G∗

x TxF( )T ∗
x F 0 0 A−1

G∗
x 0 −B−1 0

TxF −A−1 0 0

. (42)
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Since the bivector Zx is represented by the (2 × 2) top-left block matrix in (42), this
shows that Z ∈ �(∧2G) and Z � = (−B−1)T = −(ω

�
C )−1 as maps G∗ → G. The

proves the claim.
Claim 2: For any γ1, γ2 ∈ �1(C), we have

i∗[p∗γ1, p∗γ2]�G = [γ1, γ2]Z .

To prove Claim 2, we compute using Claim 1:

i∗[p∗γ1, p∗γ2]�G

= i∗
(
ι
�

�
G (p∗γ1) p

∗(dγ2) − ι
�

�
G (p∗γ2) p

∗(dγ1) + d
(
�G(p∗γ1, p∗γ2)

))

= ιZ�(γ1)
dγ2 − ιZ�(γ2)

dγ1 + d
(
Z(γ1, γ2)

)

= [γ1, γ2]Z .

We now finish the proof of the proposition, by showing that

r
(
i∗

[
p∗(d( j(α))), p∗( j(β))

]
�G

)
= 〈〈(

Id ⊗ (ω
�
C )−1)(τ (d1,0α)), τ (d1,0β)

〉〉
. (43)

Note that both sides are linear in d( j(α)). This is clear for the left hand side, and
for the right hand side this follows from the fact that d1,0α is just the component of
d( j(α)) lying in �(G∗ ⊗ T ∗F). Hence, to prove the equality (43), we may assume
that

d( j(α)) = ξ1 ∧ ξ2 + ξ ∧ η + η1 ∧ η2 ∈ �(∧2T ∗F) ⊕ �(T ∗F ⊗ G∗) ⊕ �(∧2G∗).
(44)

Using Claim 1 and Claim 2, the left-hand side in (43) is given by

r
(
i∗

[
p∗ξ1 ∧ p∗ξ2 + p∗ξ ∧ p∗η + p∗η1 ∧ p∗η2, p∗( j(β))

]
�G

)

= r
(
i∗

(
p∗ξ1 ∧ [

p∗ξ2, p∗( j(β))
]
�G

+ [
p∗ξ1, p∗( j(β))

]
�G

∧ p∗ξ2

+p∗ξ ∧ [
p∗η, p∗( j(β))

]
�G

))

= ξ1 ∧ r
([ξ2, j(β)]Z

) + r
([ξ1, j(β)]Z

) ∧ ξ2 + ξ ∧ r
([η, j(β)]Z

)

= ξ ∧ r
(
ιZ�(η)d( j(β))

)
.

On the other hand, from (44) it immediately follows that

(
Id ⊗ (ω

�
C )−1)(τ (d1,0α)) = −(

Id ⊗ (ω
�
C )−1)(ξ ∧ η)

= −ξ ⊗ (ω
�
C )−1(η) = ξ ⊗ Z �(η),
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hence the right-hand side in (43) is given by

〈〈(
Id ⊗ (ω

�
C )−1)(τ (d1,0α)), τ (d1,0β)

〉〉 = ξ ∧ 〈〈
Z �(η), τ (d1,0β)

〉〉

= ξ ∧ r
(
ιZ�(η)d( j(β))

)
.

This shows that the equality (43) holds, and this in turn proves the proposition. ��
Remark 4.14 If the complement G is involutive, then the proof of Proposition 4.12
becomesmore geometric. In that case, we have a symplectic foliation (G, ωC ) defining
a Poisson structure �base on C , and the projection p : (U ,�G) → (C,�base) is a
Poisson map. This immediately implies Claim 1 in the proof above. It also implies
Claim2, because of the following. Recall that the since p is a Poissonmap, the pullback
bundle p∗T ∗C carries a natural Lie algebroid structure (ρ, [•, •]p∗) determined by

[p∗γ1, p∗γ2]p∗ = p∗[γ1, γ2]�base , ρ(p∗γ ) = �
�
G(p∗γ ).

When p∗T ∗C is endowed with this Lie algebroid structure and T ∗U carries its usual
cotangent Lie algebroid structure (�

�
G, [•, •]�G ), the natural map p∗T ∗C → T ∗U

is a Lie algebroid morphism [6, Prop. 1.10]. But since p : U → C is a submersion,
the map p∗T ∗C → T ∗U is injective, hence (p∗T ∗C, ρ, [•, •]p∗) becomes a Lie

subalgebroid of (T ∗U ,�
�
G , [•, •]�G ). Compatibility of their Lie brackets implies

Claim 2 in the proof above.

At last, we pass to cohomology. The pairing (39) descends to

〈〈•, •〉〉 : Hk(F; NF) × Hl(F; N∗F) → Hk+l(F),

the map (−1)•(τ ◦d1,0) descends to dν by Corollary 5.4, and we have an isomorphism

[Id ⊗ (ω
�
C )−1] : H•(F; N∗F) → H•(F; NF),

see Sect. 1.3.2. Hence, Proposition 4.12 immediately implies the following.

Corollary 4.15 The Kuranishi map of
(
�(∧T ∗F)[1], {λk}

)
is given canonically by

Kr : H1(F) → H2(F) : [β] �→ −
〈〈 ([

Id ⊗ (ω
�
C )−1] ◦ dν

)
[β], dν[β]

〉〉
.

In particular, ker(dν) is contained in ker(Kr).
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5 Appendix

5.1 Proofs for results in Sect. 2.2.2

This subsection is devoted to the proofs of Proposition 2.10 and Lemma 2.12. Both
proofs will use some ingredients of the spectral sequence of the foliationF , which we
introduce now.

Recall that we fixed a complement G to the characteristic distribution TF on C .
The decomposition TC = TF ⊕ G induces a bi-grading on �(C), namely

�k(C) =
⊕

u+v=k

�u,v(C),

where

�u,v(C) := �(∧uG∗ ⊗ ∧vT ∗F).

With respect to this bi-grading, the de Rham differential splits into a sum of bihomo-
geneous components

d = d0,1 + d1,0 + d2,−1, (45)

where the subscript (i, j) indicates the bi-degree of the component di, j . Note that d2,−1
vanishes exactly when the complement G is involutive. We will use the following
explicit formulae for d0,1 and d1,0, which can be found in [25, Chapter 4]. If ω ∈
�u,v(C), then

(d0,1ω)(Y1, . . . ,Yu; V1, . . . , Vv+1)

=
v+1∑

i=1

(−1)u+i+1Vi
(
ω(Y1, . . . ,Yu; V1, . . . , V̂i , . . . , Vv+1)

)
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+
∑

1≤i< j≤v+1

(−1)i+ j+uω(Y1, . . . ,Yu; [Vi , Vj ], V1, . . . , V̂i , . . . , V̂ j , . . . , Vk+1)

+
u∑

α=1

v+1∑

j=1

(−1)u+α+ jω
(
prG[Yα, Vj ],Y1,

. . . , Ŷα, . . . ,Yu; V1, . . . , V̂ j , . . . , Vv+1
)

and

(d1,0ω)(Y1, . . . , Yu+1; V1, . . . , Vv)

=
u+1∑

α=1

(−1)α+1Yα

(
ω(Y1, . . . , Ŷα, . . . , Yu+1; V1, . . . , Vv)

)

+
∑

1≤α<β≤u+1

(−1)α+βω
(
prG [Yα, Yβ ], Y1, . . . , Ŷα, . . . , Ŷβ, . . . , Yu+1; V1, . . . , Vv

)

+
u+1∑

α=1

v∑

j=1

(−1)α+ j+1ω
(
Y1, . . . , Ŷα, . . . , Yu+1; prTF [Yα, Vj ], V1, . . . , V̂ j , . . . , Vv

)
.

5.1.1 The proof of Proposition 2.10

To prove Proposition 2.10, we rewrite the map � from Definition 2.5 in terms of the
bihomogeneous component d1,0 : �(∧•T ∗F) → �(G∗ ⊗ ∧•T ∗F). More precisely, we
have that

〈�(α)(V1, . . . , Vk), β〉 = (−1)k(d1,0α)
(
(ω

�
C )−1(β), V1, . . . , Vk

)

for α ∈ �(∧kT ∗F), β ∈ �(G∗) and V1, . . . , Vk ∈ �(TF). If we use the obvious identifi-
cation

τ : �(G∗ ⊗ ∧kT ∗F) → �(∧kT ∗F ⊗ G∗)

determined by

〈τ(η)(V1, . . . , Vk), Y 〉 = 〈η(Y ), V1 ∧ · · · ∧ Vk〉,

then we obtain the following description of the map �.

Lemma 5.1 The map � : �(∧kT ∗F) → �(∧kT ∗F ⊗ G) is given by

�(α) = (−1)k+1
(
Id ⊗ (ω

�
C )−1

)

(
τ(d1,0α)

)
, α ∈ �(∧kT ∗F). (46)

It follows that in order to study �, one only has to understand the map

τ ◦ d1,0 : �(∧•T ∗F) → �(∧•T ∗F ⊗ G∗).
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We now show that this map intertwines the differentials dF and d∇∗ .

Lemma 5.2 We have a chain map

τ ◦ d1,0 : (�•(F), dF
) → (

�•(F;G∗), d∇∗
)
.

Proof We start by expressing the complexes
(
�•(F), dF

)
and

(
�•(F;G∗), d∇∗

)
in the

bi-degree language introduced above. We claim that the following hold.

Claim: (i)
(
�•(F), dF

) = (
�0,•(C), d0,1

)
,

(i i) τ : (�1,•(C), d0,1
) ∼→ (

�•(F;G∗), d∇∗
)
intertwines differentials, up to sign.

Since (i) is clear, we only justify (i i). Pick β ∈ �1,k(C), and let V1, . . . , Vk+1 ∈ �(TF)

and Y ∈ �(G). On one hand, we have

〈
τ(d0,1β)(V1, . . . , Vk+1), Y

〉 = (d0,1β)(Y , V1, . . . , Vk+1)

=
k+1∑

i=1

(−1)i Vi
(
β(Y , V1, . . . , V̂i , . . . , Vk+1)

)

+
∑

1≤i< j≤k+1

(−1)i+ j+1β(Y , [Vi , Vj ], V1, . . . , V̂i , . . . , V̂ j , . . . , Vk+1)

+
k+1∑

j=1

(−1) jβ
(
prG [Y , Vj ], V1, . . . , V̂ j , . . . , Vk+1

)
.

On the other hand,

〈
d∇∗(τ (β))(V1, . . . , Vk+1), Y

〉

=
k+1∑

i=1

(−1)i+1〈∇∗
Vi τ(β)(V1, . . . , V̂i , . . . , Vk+1), Y

〉

+
∑

1≤i< j≤k+1

(−1)i+ j 〈τ(β)
([Vi , Vj ], V1, . . . , V̂i , . . . , V̂ j , . . . , Vk+1

)
, Y

〉
.

Here,

〈∇∗
Vi τ(β)(V1, . . . , V̂i , . . . , Vk+1), Y

〉 =Vi
〈
τ(β)(V1, . . . , V̂i , . . . , Vk+1), Y

〉

− 〈
τ(β)(V1, . . . , V̂i , . . . , Vk+1), prG [Vi , Y ]〉

=Vi
(
β(Y , V1, . . . , V̂i , . . . , Vk+1)

)

− β
(
prG [Vi , Y ], V1, . . . , V̂i , . . . , Vk+1

)

and

〈
τ(β)

([Vi , Vj ], V1, . . . , V̂i , . . . , V̂ j , . . . , Vk+1
)
, Y

〉

= β
(
Y , [Vi , Vj ], V1, . . . , V̂i , . . . , V̂ j , . . . , Vk+1

)
.
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Upon comparison, we see that τ(d0,1β) = −d∇∗(τ (β)), hence the claim is proved.
Next, we relate the bihomogeneous components of the de Rham differential d with each

other. By the decomposition (45), we have that d2 maps �u,v(C) into

�u,v+2(C) ⊕ �u+1,v+1(C) ⊕ �u+2,v(C) ⊕ �u+3,v−1(C) ⊕ �u+4,v−2(C).

Because each component of d2 must be zero, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d0,1d0,1 = 0

d0,1d1,0 + d1,0d0,1 = 0

d0,1d2,−1 + d1,0d1,0 + d2,−1d0,1 = 0

d1,0d2,−1 + d2,−1d1,0 = 0

d2,−1d2,−1 = 0

. (47)

At last, we prove the statement of the lemma. Using the second relation in (47) and (i i)
of the claim above, we have for α ∈ �(∧•T ∗F) that

(τ ◦ d1,0)(d0,1α) = −(τ ◦ d0,1)(d1,0α) = d∇∗((τ ◦ d1,0)(α)).

Since by (i) of the claim above, the restriction of d0,1 to �(∧•T ∗F) coincides with the
foliated de Rham differential dF , this finishes the proof.

��
Item (i) of Proposition 2.10 is now immediate.

Corollary 5.3 The map

� : (�•(F), dF
) → (

�•(F;G), d∇
)

is a chain map, up to sign.

Proof From the expression (46), we get that for α ∈ �k(F),

�(dFα) = (−1)k
(
Id ⊗ (ω

�
C )−1

) (
τ(d1,0(dFα))

)

= (−1)k
(
Id ⊗ (ω

�
C )−1

) (
d∇∗(τ (d1,0α))

)

= (−1)kd∇
((

Id ⊗ (ω
�
C )−1

)
(τ (d1,0α))

)

= −d∇(�(α)).

Here, we also used that Id ⊗ (ω
�
C )−1 intertwines d∇∗ and d∇ , see Sect. 1.3.2. ��

Also item (i i) of Proposition 2.10 is a consequence of Lemma 5.2.

Corollary 5.4 (1) The following is a chain map, up to sign:

(−1)•(τ ◦ d1,0) : (�•(F), dF
) → (

�•(F;G∗), d∇∗
)
.
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(2) The map induced by (−1)•(τ ◦ d1,0) in cohomology is canonical, since it coincides
with the transverse differentiation map dν : H•(F) → H•(F; N∗F).

(3) The map � induces a canonical map in cohomology, namely

[ − Id ⊗ (ω
�
C )−1] ◦ dν : H•(F) → H•(F; NF).

Proof For α ∈ �k(F), we have

(−1)k+1(τ ◦ d1,0)(dFα) = −d∇∗
(
(−1)k(τ ◦ d1,0)(α)

)
,

which proves (1). To prove item (2), we will identify N∗F ∼= G∗. For a closed foliated
form α ∈ �(∧kT ∗F), note that one can compute dν[α] as follows. First extend α by zero
on the complement G, so that we can view α as an element of �k(C). Then, pick the
component of

dα ∈ �(∧k+1T ∗F) ⊕ �(∧kT ∗F ⊗ G∗) ⊕ �(∧k−1T ∗F ⊗ ∧2G∗)

lying in�(∧kT ∗F⊗G∗). This immediately implies item (2). Item (3) is nowa consequence
of item (2) and the expression (46). ��

We now showed that the canonical map dν in cohomology is induced by a cochain map,
which can be defined at the expense of choosing a complementG to TF . The cochain map
in question is essentially the component d1,0. This implies that the space ker(dν) is a term
on the page E2 of the spectral sequence of the foliation F . This gives more insight into the
space of first-order deformations, see Definition 2.11. We give the details in the following
remark.

Remark 5.5 Given an arbitrary foliation F , recall that its spectral sequence {Ek, dk} arises
from a descending filtration of the de Rham complex, given by the spaces

�r
k = {

ω ∈ �r (C) : ιX1∧···∧Xr−k+1ω = 0, ∀X1, . . . , Xr−k+1 ∈ �(TF)
}
.

Picking a complementG toTF ,we see that�r
k is the ideal in�r (C)generated by�(∧kG∗).

The page E0 has terms given by

Eu,v
0 = �u+v

u /�u+v
u+1

∼= �(∧uG∗ ⊗ ∧vT ∗F),

and it is equipped with the differential d0,1 defined in (45). More concisely, E0 =(
�(C), d0,1

)
. The page E1 is the cohomology of E0, endowedwith the differential induced

by d1,0, i.e.,

(
H(�(C), d0,1), [d1,0]

)
.
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Using implicitly the identifications from the claim in Lemma 5.2, we see that the first two
columns of the page E1 look as follows:

...
...

H2(F) H2(F;G∗) · · ·

H1(F) H1(F;G∗) · · ·

H0(F) H0(F;G∗) · · ·

[d1,0] [d1,0]

[d1,0] [d1,0]

[d1,0] [d1,0]

The page E2 consists of the cohomology groups of the complex E1, i.e.,

H
(
H(�(C), d0,1), [d1,0]

)
.

Also using Corollary 5.4, we see in particular that

E0,1
2

∼= ker
(
dν : H1(F) → H1(F; N∗F)

)
. (48)

This point of view explains in a more conceptual way why the first-order deformations
in Definition 2.11 reduce in the integral case to those considered by Ruan [20].We checked
this fact by direct computation in Example 2.13. A simpler way is remarking that in case
F is given by the fibers of a fiber bundle, then the spectral sequence of F reduces to the
Leray spectral sequence of C → C/F . Indeed, if C is compact and F is given by a fiber
bundle, then the Leray–Serre theorem [15, Cor. I.5.3] states that

E0,1
2

∼= H0(C/F;H1),

whereH1 is the flat vector bundle defined in (9). Therefore, E0,1
2 can be identified with the

space of flat sections of (H1,∇), showing that Definition 2.11 is consistent with Ruan’s
work.

5.1.2 The proof of Lemma 2.12

At last, we give the proof of Lemma 2.12. It relies on the results proved in Sect. 5.1.1,
namely on the proof of Lemma 5.2 and on Corollary 5.4.

Proof of Lemma 2.12 Fix a complement G to TF . By the claim in the proof of Lemma 5.2
and Corollary 5.4 (2), we have to show that the following two statements are equivalent:

(1) d0,1β = 0 and d1,0β is exact in
(
�1,•(C), d0,1

)
.

(2) There exists an extension β̃ ∈ �1(C) of β such that ιV dβ̃ = 0 for all V ∈ �(TF).

For one implication, assume that d0,1β = 0 and that d1,0β = d0,1γ for some γ ∈ �(G∗).
Then β̃ := β − γ ∈ �(T ∗F ⊕ G∗) is an extension of β satisfying

dβ̃ = d0,1β + d1,0β + d2,−1β − d0,1γ − d1,0γ

= d2,−1β − d1,0γ.
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The latter belongs to �(∧2G∗), and therefore ιV dβ̃ = 0 for all V ∈ �(TF).
For the converse, we can write the given extension as β̃ = β + γ for some γ ∈ �(G∗).

Decomposing dβ̃ in the direct sum

�2(C) = �(∧2T ∗F) ⊕ �(G∗ ⊗ T ∗F) ⊕ �(∧2G∗),

we have

dβ̃ = d0,1β + (
d1,0β + d0,1γ

) + (
d2,−1β + d1,0γ

)
.

Since by assumption, the components in �(∧2T ∗F) and �(G∗ ⊗ T ∗F) vanish, we get

d0,1β = 0 and d1,0β = −d0,1γ.

��

5.2 A computation in the Gotay local model

Given a coisotropic submanifold C ⊂ (M, ω) with characteristic foliation F , consider
the Gotay local model (U ,�G) associated with a choice of splitting TC = TF ⊕ G.
Throughout this paper, we frequently identified vertical fiberwise constant vector fields
on U with sections of T ∗F . In Lemma 5.6, we give the explicit formulae underlying this
correspondence. This result is essentially [22, Lemma 4.4], up to an additional minus sign.
To justify this difference, we include a detailed proof in coordinates.

As before, p : U → C denotes the projection and j : T ∗F ↪→ T ∗C the inclusion
induced by G. Also, �G = −�−1

G is the Poisson structure corresponding with �G , i :
C ↪→ U is the inclusion map and r : T ∗C → T ∗F is the restriction to the leaves of F .

Lemma 5.6 There is a natural correspondence

�(T ∗F) → Xvert .const .(U ) : β �→ �
�
G(p∗( j(β)))

with inverse

Xvert .const .(U ) → �(T ∗F) : V �→ −r
(
i∗��

G(V )
)

.

Proof Choose coordinates (q1, . . . , qk, qk+1, . . . , qn) on C such that TF = Span
{∂q1 , . . . , ∂qk }. Let (y1, . . . , yn) denote the conjugate coordinates on T ∗C . We have to
show that the correspondence described above reads as follows in these coordinates:

k∑

i=1

gi (q)dqi ↔
k∑

i=1

gi (q)∂yi . (49)

We start by expressing the symplectic form �G in coordinates. Since G is transverse to
the first summand in the decomposition

TC = Span{∂q1 , . . . , ∂qk } ⊕ Span{∂qk+1 , . . . , ∂qn },
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there exists a fiberwise linear map � such that

G = Graph
(
� : Span{∂qk+1 , . . . , ∂qn } → Span{∂q1 , . . . , ∂qk }

)

= Span
{
∂qk+1 + �(∂qk+1), . . . , ∂qn + �(∂qn )

}
.

Let us write for l = k + 1, . . . , n:

�(∂ql ) =
k∑

i=1

f il (q)∂qi .

We then obtain for i = 1, . . . , k that

〈
j(dqi ),

n∑

l=1

hl(q)∂ql

〉
=

〈
dqi ,

k∑

l=1

hl(q)∂ql −
n∑

l=k+1

hl(q)�(∂ql )
〉

=
〈
dqi ,

k∑

l=1

hl(q)∂ql −
n∑

l=k+1

k∑

α=1

f α
l (q)hl(q)∂qα

〉

= hi (q) −
n∑

l=k+1

f il (q)hl(q).

This shows that

j(dqi ) = dqi −
n∑

l=k+1

f il (q)dql ,

and therefore

j

(
k∑

i=1

yi dqi

)

=
k∑

i=1

yi dqi −
n∑

l=k+1

(
k∑

i=1

yi f
i
l (q)

)

dql .

Hence, expressing the map j : T ∗F ↪→ T ∗C in coordinates gives

j(q1, . . . , qn, y1, . . . , yk)

=
(

q1, . . . , qn, y1, . . . , yk,−
k∑

i=1

yi f
i
k+1(q), . . . ,−

k∑

i=1

yi f
i
n (q)

)

.

It follows that

j∗ωcan =
k∑

i=1

dqi ∧ dyi −
n∑

l=k+1

dql ∧ d

(
k∑

i=1

yi f
i
l (q)

)

=
k∑

i=1

dqi ∧ dyi −
n∑

l=k+1

k∑

i=1

f il (q)dql ∧ dyi −
n∑

l=k+1

k∑

i=1

yi dql ∧ d f il (q),
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hence the symplectic form �G looks like

�G =
∑

k+1≤i< j≤n

ωi j (q)dqi ∧ dq j +
k∑

i=1

dqi ∧ dyi

−
n∑

l=k+1

k∑

i=1

f il (q)dql ∧ dyi −
n∑

l=k+1

k∑

i=1

yi dql ∧ d f il (q).

It is now clear that the correspondence described in the statement of the lemma acts as
required in (49), since we have

−�
�
G

(
k∑

i=1

gi (q)∂yi

)

=
k∑

i=1

gi (q)dqi −
n∑

l=k+1

(
k∑

i=1

gi (q) f il (q)

)

dql

= p∗
(

j

(
k∑

i=1

gi (q)dqi

))

.

��
Remark 5.7 The correspondence from Lemma 5.6 extends to foliated differential forms
and vertical fiberwise constant multivector fields. Explicitly, it is given by

�(∧kT ∗F) → Xk
vert .const .(U ) : β �→ (∧k�

�
G)(p∗( j(β)))

with inverse

Xk
vert .const .(U ) → �(∧kT ∗F) : V �→ (−1)kr

(
i∗(∧k�

�
G)(V )

)
.
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